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Symmetries of QCD

QCD

Chiral (χS) symmetry ⇔
{

− hadron masses

− dynamics of hadrons at low energy

Center (Z3) symmetry ⇔ de/confinement

explicitly broken (softly) by the presence of dynamical quarks

QCD inspired models

NJL model: only chiral symmetry aspects

chiral symmetry is explicitly and spontaneously broken
UA(1) symmetry breaking is implemented by ´t Hooft interaction

PNJL model: synthesis between chiral and de/confinement aspects
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QCD phase transitions

QCD → two phase transitions

restoration of chiral symmetry
order parameters: quark condensates

〈qi qi〉
{

6= 0 ⇔ symmetry broken, T < Tc

= 0 ⇔ symmetry restored, T > Tc

deconfinement
order parameter: Polyakov loop

Φ = 1
Nc

Trc

〈〈

P exp
[

i
∫ β

0 dτA4(~x, τ)
]〉〉

Φ

{

= 0 ⇔ confined phase, T < Tc

6= 0 ⇔ deconfined phase, T > Tc

PURPOSE: Consider a model which describes both low and high
temperature QCD behavior in a single picture → PNJL model
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Motivation

Understand the QCD phase structure is one of the most important

topics in the physics of strong interactions

The very first "QCD" phase

diagram taken from Cabibbo-

Parisi (1975)

− N. Cabibbo, G. Parisi, PLB 59 (1975) 67

A schematic outline for the

phase diagram of matter at ul-

trahigh density and tempera-

ture
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Motivation

Understand the QCD phase structure is one of the most important

topics in the physics of strong interactions

Theoretical point of view:

Effective model calculations

Lattice calculations

− S. Borsanyi et al., JHEP 1011 (2010) 077

Experimental point of view:

Map the QCD phase boundary

Localization of the CEP
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− A. Andronic et al., NPA 837 (2010) 65
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Motivation

Understand the QCD phase structure is one of the most important

topics in the physics of strong interactions

Experimental point of view:

Beam Energy Scan (BES) program at RHIC1:

map the QCD phase boundary;

search for the QCD Critical End Point

"energy scan" of Au+Au collisions at energies from√
sNN = 7.7 − 200 GeV

higher moments of net-proton multiplicity distributions
particle ratio fluctuations (K/π , p/π and K/p)

CEP:

No clear evidence yet!

1 Xiaofeng Luo, STAR Collaboration, APPB 5 No 2 (2012) 497
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Motivation

Understand the QCD phase structure is one of the most important

topics in the physics of strong interactions

Much more to come in the future

CERN (NA61)

FAIR (CBM)

NICA (MPD)

NICA: Nuclotron based Ion Collider fAcility Collider with
√

sNN = 3.5 − 11

GeV (Begin 2015)
Program:

Systems with highest baryon density

Critical point

Quarkyonic phase

Chiral symmetry restoration

If the CEP is found, it would be the first clear indication for the chiral phase

transition in the heavy-ion experiments
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Model and formalism

Polyakov loop extended NJL model with strange quarks

LPNJL = q̄ (iγµDµ − m̂) q +
gS

2

8

∑
a=0

[

(q̄λaq)2 + (q̄(iγ5)λ
aq)2

]

+ gD

[

det
[

q̄(1 + γ5)q
]

+ det
[

q̄(1 −γ5)q
]

]

−U (Φ[A], Φ̄[A]; T)

where m̂ = diag(mu, md, ms) is the current quark mass matrix.

Coupling between Polyakov loop and quarks uniquely determined by covariant
derivative Dµ

Dµ = ∂µ + igAµ and Aµ = δ
µ
0 A0 (Polyakov gauge)

− C. Ratti, et al., PRD 73 (2006) 014019
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Model and formalism

Polyakov loop extended NJL model with strange quarks

Quarks are coupled simultaneously to the chiral condensate and to the
Polyakov loop

the model includes features of both chiral and Z3 symmetry
breaking

the coupling is fundamental for reproducing lattice results
concerning QCD thermodynamics: it originates a suppression of

the unconfined quarks in the hadronic phase 1 (low temperature)

A non-zero Polyakov loop reflects the spontaneously broken Z3

symmetry characteristic of deconfinement (high temperature)

Z3 is broken in the deconfined phase (Φ→ 1)

Z3 is restored in the confined one (Φ→ 0)

At T = 0: Φ = Φ̄ = 0 7−→ both sectors decouple

1− C. Ratti et al., PRD 73 (2006) 014019
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Model and formalism

Effective potential U (Φ, Φ̄; T)

Effective potential for the (complex) Φ field: is conveniently chosen to
reproduce results obtained in lattice calculations

U (Φ, Φ̄; T)

T4
= − a (T)

2
Φ̄Φ+ b(T)ln[1 − 6Φ̄Φ+ 4(Φ̄3 +Φ3)− 3(Φ̄Φ)2]

with

a (T) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

, b(T) = b3

(

T0

T

)3

a0 a1 a2 b3

3.51 -2.47 15.2 -1.75

and T0 = 270 MeV

− S. Roessner, C. Ratti, W. Weise, PRD 75 (2007) 034007
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Model and formalism

PNJL model at finite temperature and chemical potential

The thermodynamic potential is:

Ω(Φ, Φ̄, Mi; T,µ) = U (Φ, Φ̄, T) + 2g
S ∑
{i=u,d,s}

〈q̄iqi〉2 − 2g
D 〈q̄iqi〉

〈

q̄ jq j

〉

〈q̄kqk〉

− 2Nc ∑
{i=u,d,s}

∫

Λ

d3 p

(2π)3
Ei

− 2Nc T ∑
{i=u,d,s}

∫

Λ

d3 p

(2π)3

{

Trc ln
[

1 + L†e−(Ei−µ)/T
]

+ Trc ln
[

1 + Le−(Ei+µ)/T
]}

with Ei =
√

p2 + M2
i
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Model and formalism

Methodology:

Minimization of Ω(Φ, Φ̄, Mi; T,µ) with respect to Mi (i = u, d, s)

“Gap” equations:

Mi = mi − 2 gS 〈〈q̄i qi〉〉 − 2 gD 〈〈q̄ j q j〉〉〈〈q̄k qk〉〉

Effective action for the scalar and pseudoscalar mesons

Meson propagators, gMq̄q, fMq̄q,...

Generalization of the PNJL model to finiteµ : Matsubara formalism
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Model and formalism

Parameters and results:

Parameter set

Physical quantities and constituent quark masses

fπ = 92.4 MeV mu = md = 5.5 MeV

Mπ = 135.0 MeV ms = 140.7 MeV

MK = 497.7 MeV Λ = 602.3 MeV

Mη′ = 960.8 MeV gSΛ
2 = 3.67

Mη = 514.8 MeV∗ gDΛ
5 = −12.36

fK = 97.7 MeV∗ Mu= Md = 367.7 MeV∗

Mσ = 728.8 MeV∗ Ms = 549.5 MeV∗

Ma0
= 873.3 MeV∗

Mκ = 1045.4 MeV∗

M f0
= 1194.3 MeV∗

θP = −5.8o∗ ; θS = 16o∗

− S.P. Klevansky et al., PRC 53 (1996) 410

− P. Costa, et al. PRD 71 (2005) 116002 P. Costa− eQCD, 6-12 May 2012 – p. 14/34



PNJL characteristic temperatures

We rescale T0 from 270 MeV to 210 MeV:
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Smooth crossover from the chirally broken to the chirally symmetric

phase around Tχc : partial restoration of chiral symmetry

Polyakov loop: still good (approximate) order parameter

Φ→ 1 as T increases: deconfinement

− P. Costa, et al., Symmetry 2 (2010) 1338
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PNJL characteristic temperatures

T0 [MeV] Tχc [MeV] TΦc [MeV] Tc [MeV] Tχc − TΦc [MeV]

210 203 171 187 32

270 222 210 216 12

T0 = 210 MeV to compare with lattice calculations (next slide)

Tχc − TΦc = 32 MeV

T0 = 270 MeV (rest of the presentation)

chiral/deconfinement transitions almost coincidence

(Tχc − TΦc = 12 MeV)

characteristic temperatures are larger than lattice results for
chiral/deconfinement transitions

Results are qualitatively similar for both choices
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PNJL vs. lattice results
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Pressure, energy and entropy densities are continuous functions of the temperature: a

crossover takes place

In the three curves there is a sharp increase in the vicinity of the transition

temperature and then a tendency to saturate. The corresponding ideal gas limit is

pSB

T4
= (N2

c − 1)
π2

45
+ Nc N f

7 π2

180

The inclusion of the Polyakov loop effective potential U (Φ, Φ̄) (it can be seen as an

effective pressure term mimicking the gluonic degrees of freedom of QCD) is required

to approach the Stefan–Boltzmann limit

− M. Cheng, et al., PRD 81 (2010) 054504
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Nature of the phase transition

1st order phase transition at T = 0 and µ 6= 0
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First-order phase transition found at µcr = 361.7 MeV

Three solutions of the gap equation in the domain µ2 < µ < µ1: allow for regions of

stability, metastability and instability

The stable solutions are realized by the minimum of the thermodynamic potential

µ < µcr: phase of broken χS symmetry; µ > µcr: “symmetric” phase

At µcr = 361.7 MeV ρB jumps from 0 to ρcr
B = 2.36ρ0
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Phase diagram

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

1st order
  region  

 

 

T 
(M

eV
)

 (MeV)

CEP

Chiral Limit

crossover
  region  

CEP:
TCEP = 155.80 MeV
µCEP = 290.67 MeV

P. Costa− eQCD, 6-12 May 2012 – p. 19/34



Phase diagram
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Susceptibility near the CEP

Behavior of the quark number susceptibility around the CEP:

TCEP = 155.80 MeV and T = TCEP ± 10 MeV
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T < TCEP: the transition is first-order and χ has a discontinuity

T = TCEP: χ diverges

T > TCEP: the discontinuity disappears at the transition line (crossover)
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CEP

Lattice calculations:

CEP: Is it there or not?

Yes1

CEP:
TCEP = 162 ± 2 MeV

µCEP
B = 360 ± 40 MeV

No2

T

µ

confined

QGP

Color superconductor

m > mc(0)

Tc

T

µ

confined

QGP

Color superconductor

m < mc(0)

Tc

1 Z. Fodor, S.D. Katz, JHEP 0404 (2004) 050
2 P. de Forcrand, O. Philipsen, JHEP 0811 (2008) 012 P. Costa− eQCD, 6-12 May 2012 – p. 21/34



Anomaly strength and the CEP

In a hot and dense medium gD might take a different (presumably smaller)

value then gD0 (fixed in the vacuum)
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the location of the QCD critical end point depends on the value of gD

as gD → 0, the CEP disappears from the phase diagram

the first-order region becomes wider with larger gD and narrower
with smaller gD
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Phase diagram

1 T0(µ) = Tτ e−1/(α0b(µ)) ; b(µ) = 11Nc
6π − 16N f

π
µ2

T2
τ
; α0 = 0.304; T2

τ = 1.770 GeV
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TCEP = 155.80 MeV
µCEP = 290.67 MeV

CEP (T0(µ)):

TCEP = 110.0 MeV
µCEP = 290.2 MeV

1− B. J. Schaefer et al., PRD 76 (2007) 074023
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Phase diagram

The CEP Under Strong Magnetic Fields in NJL model1:
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The size of the first order transition line increases as the magnetic field
strength increases

The location of the CEP is also affected by the presence of magnetic fields

1− S. S. Avancini et al., accepted for publication in PRD(R),
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Phase diagram

Polyakov-NJL model with eight quark interactions1:

0.0 0.1 0.2 0.3 0.4
Μ0.00

0.05

0.10

0.15

0.20
T

1 See talk by B. Hiller
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Summary Part I

The effects of the Polyakov loop on the restoration of symmetries have
been investigated, in the SU(3) PNJL model;

The model incorporates symmetry breaking of χS, Z3, and UA(1);

The most reliable parametrization of PNJL model predicts the CEP in
the phase diagram, together with the formation of stable quark droplets
in the vacuum state at T = 0;

The comparison with lattice results shows that the model provides a
convenient tool to obtain information for systems at finite T;

The location of the CEP depends on the value of gD: as gD → 0, the
CEP disappears from the phase diagram;

The physical observables are strongly influenced by the nature of the
phase transitions: baryon number susceptibility diverges at the CEP.
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Part II

Collaboration with O. Oliveira and P. J. Silva
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Low Energy Physics and The Gluon Propagator

To connect the IR gluon propagator with low energy phenomenology an
effective low energy chiral quark model of the NJL type can be built.
The interaction between quarks and gluons is:

LψψA = gψγµ Aa
µ

λa

2
ψ

Expanding the term containing LψψA up to g2 and integrating the gluon fields,

the theory becomes an effective nonlocal fermionic theory

S[ψ,ψ] =
∫

d4xd4 y
{

ψ(y) δ(y − x) (iγµ∂µ − m)ψ(x)

+
g2

8
J(x, y)D(x − y)J(y, x)− g2

8
J5(x, y)D(x − y)J5(y, x)

}

J(x, y) = ψ(x)ψ(y), J5(x, y) = ψ(x)γ5ψ(y)
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Low Energy Physics and The Gluon Propagator

First principles calculations of the G P from lattice QCD:

D(p2) = Z

(

p2
)2κ−1

(

p2 +Λ2
QCD

)2κ

describes both the scaling (κ > 0.5) and decoupling (κ = 0.5) infrared
DSE solutions

the lattice data up to p ∼ 800 MeV 1

ΛQCD stands for an infrared mass scale

Let us define the dimensionless form factor in momentum space as

f (p2) = Λ2D(p2) =
Λ2

p2

(

p2

p2 +Λ2
QCD

)2κ

θ(Λ− p)

1− O. Oliveira, P.J. Silva, PRD 79 (2009) 031501
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mq [MeV] Mq [MeV] − 〈q̄q〉1/3 [MeV] GΛ2 Γπγγ [eV]

κ = 0.50 4.187 360.5 271.4 6.441 5.44

κ = 0.529 4.205 383.6 271.1 7.491 7.79

A collection of parameters which reproduce the experimental Mπ and fπ
for a cut-off Λ = ΛQCD = 800 MeV

The results differ essentially on the value of the decay width Γπ→γγ
(Γ

exp
π→γγ = 7.78(56) eV)
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It is important to point out that this model is consistent with the
Gell-Mann–Oakes–Renner relation (GMOR)

M2
π f 2
π = −2mq〈q̄q〉0

preserving chiral low-energy theorems and current algebra relations.

GMOR value for the current quark mass at κ = 0.5:

mGMOR
q = − M2

π f 2
π

2〈q̄q〉0
= 4.159MeV

differs less then 1% of the calculated value mq = 4.187 MeV.
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κ = 0.5 (decoupling type of propagator):

D(p2) =
Z

p2 + M2
gluon

Λ [MeV] Mgluon [MeV] mq [MeV] Mq [MeV] − 〈q̄q〉1/3 [MeV] GΛ2

750 843.8 4.5 460.9 264.2 6.03

800 878.7 4.2 409.8 271.6 5.39

813 888.5 4.1 400.0 273.5 5.27

850 917.7 3.9 373.3 278.9 4.96

900 959.1 3.6 345.7 286.3 4.66
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κ = 0.5 (decoupling type of propagator):

D(p2) =
Z

p2 + M2
gluon
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Outlook Part II

Generalization of the results to non-zero temperature (this requires
modeling the gluon propagator by a functional form compatible with
both Dyson-Schwinger and lattice QCD results);

Investigate the meson properties at finite temperature as probes for the
chiral symmetry restoration;

Study how dynamical fermions change the gluon propagator at finite
temperature, and how our nonlocal model can accommodate these
changes.
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