Institut für Theoretische Physik

Scalar and Axial-Vector Mesons in a Three-Flavour Sigma Model

[Based on: Phys.Rev. D82 (2010) 054024 (arXiv:1003.4934)

<u>Denis Parganlija</u>

Int.J.Mod.Phys. A26 (2011) 607-609 (arXiv:1009.2250)

and PhD Thesis of D. Parganlija (2012)]

In collaboration with

Francesco Giacosa and Dirk H. Rischke

(Frankfurt)

(Budapest)

György Wolf and Péter Kovács

Introduction: Definitions and Experimental Data

- Mesons: quark-antiquark states
- Quantum numbers: J^{PC}

Total Spin Parity Charge Conjugation

- Scalar mesons: $J^{PC} = \Box \equiv [\sigma \text{ or } f_0(600), a_0(980), a_0(1450)...]$
- Pseudoscalar mesons: $J^{PC} = \Box^{\text{T}} \equiv [\pi, K, \eta, \eta'...]$
- Vector mesons: J^{PC} = ^Δ^Δ [ρ, K*, ω, φ(1020)...]
- Axial-Vector messon singer and the Vien PGJ Frankfull = [a₁(1260), Flavour Sigma Model

Motivation:

PDG Data on J^{PC} = 0^{++} Mesons $\overline{nn} \propto \overline{uu} + \overline{dd}$ Six states up to 1.8 GeV (isoscalars)

State	Mass [MeV]	Width [MeV]
f ₀ (600)	400 - 1200	600 - 1000
f ₀ (980)	980 ± 10	40 - 100
f ₀ (1370)	1200 - 1500	200 - 500
f ₀ (1500)	1505 ± 6	109 ± 7
f ₀ (1710)	1720 ± 6	135 ± 8
f ₀ (1790)	1790 ⁺⁴⁰ ₋₃₀	270 ⁺⁶⁰ ₋₃₀

Denis Parganlija (TU Vienna / GU Frankfurt) Scalar and Axial-Vector Mesons in a Three-Flavour Sigma Model

Glueball

meson - meson boundstate

 $\overline{S}S$

Motivation: Reasons to Consider Mesons

- Mesons: hadronic states with integer spin
- More scalar mesons than predicted by quarkantiquark picture
 → Classification needed Look for tetraquarks, glueballs...
- Walecka Model: Nucleon-nucleon interaction via σ meson
- Restoration of chiral invariance and decofinement \leftrightarrow Degeneration of chiral partners π and $\sigma \rightarrow \sigma$ has to be a quarkonium
- Identify the scalar quarkonia → Need a model with scalar and other states

An Effective Approach: Linear Sigma Model

Implements features of QCD:

- \bigcirc SU(N_f)_L x SU(N_f)_R Chiral Symmetry
- Explicit and Spontaneous Chiral Symmetry Breaking; Chiral U(1)_A Anomaly
- Vacuum calculations \rightarrow calculations at $T\neq 0$
- Chiral-Partners degeneration above $T_C \rightarrow$ order parameter for restoration of chiral symmetry
- The model here: N_f = 3 (mesons with u, d, s quarks) in scalar, pseudoscalar, vector and axial-vector channels
 - \rightarrow extended Linear Sigma Model eLSM

Vacuum spectroscopy of quark-antiquark states

Resonances I

• Pseudoscalars

Vectors $V_{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \omega_{N\mu} + \rho_{\mu}^{0} & \phi_{\mu}^{+} & K_{\mu}^{*+} \\ \sqrt{2} & \phi_{\mu} & \phi_{\mu}^{+} & \phi_{\mu}^{*} \\ \rho_{\mu}^{-} & \phi_{\mu}^{-} & \phi_{\mu}^{*} & K_{\mu}^{*0} \\ \sqrt{2} & \phi_{\mu} & \phi_{\mu}^{*} & \phi_{\mu}^{*} \\ \sqrt{2} & \phi_{\mu}^{*} & \phi_{\mu}$ η, η'

 $\omega_N \equiv \omega(782) = \overline{n}n$ $\omega_S \equiv \varphi(1020) = \overline{s}s$ $\rho \equiv \rho(770)$ $K^* \equiv K^*(892)$

Resonances II

The Lagrangian I

• Scalars and Pseudoscalars $\mathcal{L}_{SP} = \text{Tr}[(D^{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)] - m_0^2 \text{Tr}(\Phi^{\dagger}\Phi) - \lambda_1[\text{Tr}(\Phi^{\dagger}\Phi)]^2 - \lambda_2\text{Tr}(\Phi^{\dagger}\Phi)^2 + (\text{Tr}[H(\Phi + \Phi^{\dagger})] + c[(\det \Phi + \det \Phi^{\dagger})^2 - 4\det(\Phi\Phi^{\dagger})])$

Explicit Symmetry Breaking

Chiral Anomaly

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\sigma_{N} + a_{0}^{0}}{\sqrt{2}} & a_{0}^{+} & K_{s}^{+} \\ a_{0}^{-} & \frac{\sigma_{N} - a_{0}^{0}}{\sqrt{2}} & K_{s}^{0} \\ \kappa_{s}^{-} & \frac{\pi^{-}}{\sqrt{2}} & \kappa_{s}^{0} \\ \kappa_{s}^{-} & \kappa_{s}^{-} & \kappa_{s}^{0} \\ \kappa_{s}^{-} & \frac{\pi^{-}}{\sqrt{2}} & \kappa_{s}^{0} \\ \kappa_{s}^{-} & \kappa_{s}^{-} & \kappa_{s}^{-} \\ \kappa_{s}^{-} & \kappa_{s}$$

The Lagrangian II

• Vectors and Axial-Vectors

$$\mathcal{L}_{VA} = -\frac{1}{4} \operatorname{Tr} (L_{\mu\nu}^{2} + R_{\mu\nu}^{2}) + \operatorname{Tr} \left[\left(\frac{m_{1}^{2}}{2} + \Delta \right) (L_{\mu}^{2} + R_{\mu}^{2}) \right] \\
-2ig_{2} (\operatorname{Tr} \{ L_{\mu\nu} [L^{\mu}, L^{\nu}] \} + \operatorname{Tr} \{ R_{\mu\nu} [R^{\mu}, R^{\nu}] \}) \\
L_{\mu\nu} = \partial_{\mu} L_{\nu} - \partial_{\nu} L_{\mu} \\
R_{\mu\nu} = \partial_{\mu} R_{\nu} - \partial_{\nu} R_{\mu} \\
\begin{pmatrix} \delta_{n} (m_{\mu d}^{2}) \\ \delta_$$

Flavour Sigma Model

Sigma Model Lagrangian with Vector and Axial-Vector Mesons (N_f = 3)

More (Pseudo)scalar – (Axial-)Vector Interactions

$$\mathcal{L}_{\text{INT.}} = \frac{h_1}{2} \operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) \operatorname{Tr} \left(L_{\mu}^2 + R_{\mu}^2 \right) + h_2 \operatorname{Tr} \left[\left(L_{\mu} \Phi \right)^2 + \left(\Phi R_{\mu} \right)^2 \right] \\ + 2h_3 \operatorname{Tr} \left(\Phi R_{\mu} \Phi^{\dagger} L^{\mu} \right)$$

 $\mathcal{L} = \mathcal{L}_{\rm SP} + \mathcal{L}_{\rm VA} + \mathcal{L}_{\rm INT.}$

- Perform Spontaneous Symmetry Breaking (SSB): $\sigma_N \rightarrow \sigma_N + \phi_N, \sigma_S \rightarrow \sigma_S + \phi_S$
- 18 parameters, 10 independent, none free → fixed via fit of masses and decay widths/amplitudes

Possible Assignments

• Isospin 1 $a_0 = \begin{cases} a_0(980) \\ a_0(1450) \end{cases}$

Isospin ½

 $K_{S} = \begin{cases} K_{0}^{*}(800) / \kappa \\ K_{0}^{*}(1430) \end{cases}$

Check all possibilities

• Isospin 0 (Isoscalars) $\begin{cases} \sigma_N \equiv \overline{n}n \\ \sigma_S \equiv \overline{s}s \end{cases} \rightarrow \begin{cases} f_0^L \equiv \text{predominantly } \overline{n}n \\ f_0^H \equiv \text{predominantly } \overline{s}s \end{cases}$ $f_0(600) \quad f_0(980) \quad f_0(1370)$ $f_0(1500) \quad f_0(1710)$ Denis Parganija (TU Vienna / GU Frankfurt) Scalar and Axial-Vector Mesons in a Three-

Flavour Sigma Model

Best Fit

Observable	Fit [MeV]	Experiment [MeV]	
f_{π}	92.5	92.4 ± 0.9	
f_K	109.6	$155.5/\sqrt{2} \pm 1.1$	
m_π	139.0	138 ± 1.4	
m_K	503.9	495.6 ± 5.0	
m_η	526.5	547.9 ± 5.5	
$m_{\eta'}$	967.7	957.8 ± 9.6	
$m_ ho$	767.2	775.5 ± 7.8	
$m_{K^{\star}}$	899.9	893.8 ± 8.9	
m_arphi	1014.0	1019.5 ± 1.02	
m_{a_1}	1178.9	1230 ± 40	
m_{K_1}	1296.4	1272 ± 12.7	
$m_{f_1(1420)}$	1405.1	$\frac{1426.4\pm14.3}{}$	
m_{a_0}	1441.7	1474 ± 74	7
$m_{K_{lpha}^{\star}}$	1536.5	1425 ± 71	5
$m_{f_0^L}$	1214.1	1350 ± 150	
$m_{f_{e}^{H}}$	1584.1	1720 ± 86	
J_0^{*}			

Observable	Fit [MeV]	Experiment [MeV]
$\Gamma_{ ho o \pi\pi}$	166.5	149.1 ± 7.4
$\Gamma_{K^{\star} \rightarrow K^{\pi}}$	44.3	46.2 ± 2.3
$\Gamma_{a_1 \to \rho \pi}$	737	425 ± 175
$\Gamma_{a_1 \to \pi \gamma}$	0.650	0.640 ± 0.250
$\Gamma_{f_1(1499) \to K^*K}$	40.0	45.9 ± 2.2
$\Gamma_{f_0^L \to \pi\pi}$	122.3	250 ± 100
$\Gamma_{f_0^L \to KK}$	125.7	150 ± 100
$\Gamma_{f_0^H \to \pi\pi}$	31.3	29.3 ± 6.5
$\Gamma_{f_0^H \to KK}$	141.6	71.4 ± 29.1

 $\begin{cases} f_0(1370) \text{ predominantly } \overline{n}n \\ f_0(1710) \text{ predominantly } \overline{s}s \\ a_1(1260)/K_1(1270) \overline{q}q \text{ states} \\ m_\rho \leftrightarrow \text{Gluon Condensate} \\ + \text{Quark Condensate}; \end{cases}$

Denis Parganlija (TU Vienna / GU Frankfurt) Scalar and Axial-Vector Mesons in a Three-

 $\eta - \eta'$ mixing angle ~ 45°

Flavour Sigma Model

Gluon Condensate dominant

What We Did Not Find

- No fit with $f_0(600)$ and $f_0(980)$ as $\overline{q}q$ states
- No fit with $K_0^*(800)$ as $\overline{q}q$ state
- No reasonable fit with $f_0(600)$ and $f_0(1370)$ as $\overline{q}q$ states

 $\rightarrow m_{K_0^*} \sim 1.1 \text{ GeV or } m_{a_0} \sim 1.2 \text{ GeV}$ $\left\{ \begin{array}{l} m_{K_0^*(800) \, / \, \kappa} = (676 \, \pm 40) \, \text{MeV} \\ m_{K_0^*(1430)} = (1425 \pm 50) \, \text{MeV} \end{array} \right\} \left\{ \begin{array}{l} m_{a_0(980)} = (980 \pm 20) \, \text{MeV} \\ m_{a_0(1450)} = (1474 \pm 19) \, \text{MeV} \end{array} \right\}$

Thus: scalar $\overline{q}q$ states above 1 GeV $\rightarrow f_0(1370)$ predominantly $\overline{n}n$ $\rightarrow f_0(1710)$ predominantly $\overline{s}s$

Summary

- Linear Sigma Model with N_f = 3 and vector and axial-vector mesons – eLSM
- Predominantly $\overline{q}q$ scalar states above 1 GeV: $f_0(1370), f_0(1710), a_0(1450), K_0^*(1430)$
- Axial-Vectors a_1 and K_1 seen as $\overline{q}q$ states

Summary: Results on J^{PC} = 0⁺⁺ Mesons

State	Mass [MeV]	Width [MeV]
f ₀ (600) tetraquark?	400 - 1200	600 - 1000
f ₀ (980) tetraquark?	980 ± 10	40 - 100
$f_0(1370)$ predominantly $\overline{n}n$	1200 - 1500	200 - 500
f ₀ (1500) predominantly glue	1505 ± 6	109 ± 7
$f_0(1710)$ predominantly $\bar{s}s$	1720 ± 6	135 ± 8

[S. Janowski, D. Parganlija, F. Giacosa and D. H. Rischke, PR D 84 (2011) 054007]

Denis Parganlija (TU Vienna / GU Frankfurt) Scalar and Axial-Vector Mesons in a Three-Flavour Sigma Model

Axial-vectors (a_1, K_1) : $\overline{q}q$

Outlook

- Lagrangian With Three Flavours + Glueball + Tetraquarks
- Mixing in the Scalar Sector: Quarkonia, Tetraquarks and Glueball
- Four Flavours
- Extension to Non-Zero Temperatures and Densities
- Include Tensor, Pseudotensor Mesons, Baryons (*Nucleons*)

Spare Slides

Quantum Chromodynamics (QCD)

QCD Lagrangian

$$L_{QCD} = \overline{q}_{f} (iD - m_{f}) q_{f} - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a}$$

Symmetries of the QCD Lagrangian

Local *SU*(3)_c Colour Symmetry

Global Chiral $U(N_f) \ge U(N_f)$ Symmetry

CPT Symmetry

Z Symmetry

Trace Symmetry

Chiral Symmetry of QCD

Left-handed and right-handed quarks:

$$\boldsymbol{q}_{\mathrm{f}} = \boldsymbol{q}_{\mathrm{f}\ L} + \boldsymbol{q}_{\mathrm{f}\ R}; \ \boldsymbol{q}_{\mathrm{f}\ L,R} = \mathsf{P}_{L,R}\boldsymbol{q}_{\mathrm{f}}$$

Chirality Projection Operators

$$\mathsf{P}_{L,R} = \frac{1\pm\gamma_5}{2}$$

Transform quark fields

$$\boldsymbol{q}_{f\ L} \rightarrow \boldsymbol{q}_{f\ L}^{'} = \boldsymbol{U}_{L}\boldsymbol{q}_{f\ L} = \boldsymbol{e}^{-i\alpha_{L}^{j}t^{j}}\boldsymbol{q}_{f\ L}, \ \boldsymbol{j} = \boldsymbol{0},...,\boldsymbol{N}_{f}^{2} - 1$$
$$\boldsymbol{q}_{f\ R} \rightarrow \boldsymbol{q}_{f\ R}^{'} = \boldsymbol{U}_{R}\boldsymbol{q}_{f\ R} = \boldsymbol{e}^{-i\alpha_{R}^{j}t^{j}}\boldsymbol{q}_{f\ R}$$

Quark part of the QCD Lagrangian:

$$\mathbf{L}_{QCD}\Big|_{quarks} = \overline{q}_{f_L} \mathbf{i} D q_{f_L} + \overline{q}_{f_R} \mathbf{i} D q_{f_R} + \overline{q}_{f_L} \mathbf{m}_{f_R} q_{f_R} - \overline{q}_{f_R} \mathbf{m}_{f_R} q_{f_L}$$

Denis Parganlija (TU Vienna / GU Frankfurt)

Explicit Breaking of

Scalar and Axial-Vector Mesons in a Three- the Chiral Symmetry Flavour Sigma Model

invariant Chiral Symmetry

Chiral Currents

- Noether Theorem: $oldsymbol{U}(N_f)_R\longmapsto R^\mu \ oldsymbol{U}(N_f)_L\longmapsto L^\mu$
- Vector current $V^{\mu} = (L^{\mu} + R^{\mu})/2$
- Axial-vector current $A^{\mu} = (L^{\mu} R^{\mu})/2$
- Vector transformation of L_{QCD} wark

$$q_{f} \rightarrow q_{f}^{i} = U_{V}q_{f} = e^{-i\sum_{j=0}^{N_{f}}\alpha_{V}^{j}t^{j}}q_{f} \xrightarrow{\text{cons. current}} p^{(\prime\prime)-1iKe}$$

$$\boldsymbol{q}_{\mathrm{f}} \rightarrow \boldsymbol{q}_{\mathrm{f}}^{'} = \boldsymbol{U}_{A} \boldsymbol{q}_{\mathrm{f}} = \mathbf{e}^{-\mathrm{i} \sum_{j=0}^{-\mathrm{i}} \alpha_{A}^{j} \gamma^{5} t^{j}}$$

Denis Parganlija (TU Vienna / GU Frankfurt) Scalar and Axial-Vector Mesons in a Three-

cons. current

 $\mathbf{A}_{1}^{\mu \, \mu} = \overline{\mathbf{q}}_{\mu} \, \gamma^{\mu} \gamma^{5} t^{J} \mathbf{q}_{f}$

Spontaneous Breaking of Chiral Symmetry

Transform the (axial-)vector fields

$\vec{\rho}^{\mu} \xrightarrow{\text{Vector}} \vec{\rho}^{\mu} + \vec{\alpha}_{V} \times \vec{\rho}^{\mu}$	Theory:
$\vec{a}_1^{\mu} \xrightarrow{\text{Vector}} \vec{a}_1^{\mu} + \vec{\alpha}_V \times \vec{a}_1^{\mu}$	ρ and a_1 should degenerate
$\vec{\rho}^{\mu} \xrightarrow{\text{Axial}} \vec{\rho}^{\mu} + \vec{\alpha}_{A} \times \vec{a}_{1}^{\mu}$	Experiment:
$\vec{a}_{1}^{\mu} \xrightarrow{Axial} \vec{a}_{1}^{\mu} - \vec{\alpha}_{A} \times \vec{\rho}^{\mu}$	$m_{a_1} \cong 2m_{\rho}$

Spontaneous Breaking of the Chiral Symmetry (SSB) \rightarrow Goldstone Bosons (pions, kaons...)

Chiral Anomaly

Two K₁ Fields

Induce
$$K_{1,A} - K_{1,B}$$
 mixing via $Tr(\Delta[A_{\mu}, B_{\mu}])$

$$\begin{pmatrix} \delta_n(m_{u,d}^2) & \\ & \delta_n(m_{u,d}^2) & \\ & & \delta_s(m_s^2) \end{pmatrix}$$

Burakovsky, Goldman (1998): $\varphi_{K_1} \sim 37^\circ$ $m_{K_{1,A}} = 1322 \text{ MeV}$ $m_{K_{1,B}} = 1356 \text{ MeV}$ $m_{K_{1(1270)}} = 1273 \text{ MeV}$ $m_{K_{1(1400)}} = 1402 \text{ MeV}$

Sigma Model Lagrangian with Vector and Axial-Vector Mesons (N_f = 3)

• Scalars and Pseudoscalars $\mathcal{L}_{SP} = \text{Tr}[(D^{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)] - m_0^2 \text{Tr}(\Phi^{\dagger}\Phi) - \lambda_1[\text{Tr}(\Phi^{\dagger}\Phi)]^2 - \lambda_2\text{Tr}(\Phi^{\dagger}\Phi)^2$ + Tr [H(\Phi + \Phi^{\dagge})] = c_1[(\text{det} \Phi + \text{det} \Phi^{\dagge})^2 - 4\text{det}(\Phi \Phi^{\dagge})]

Explicit Symmetry Breaking

Chiral Anomaly

1

1

0

Where are scalar $\overline{q}q$ states? Under 1 GeV? Above 1 GeV?

Sigma Model Lagrangian with Vector and Axial-Vector Mesons ($N_f = 3$) Vectors and Axial-Vectors $\mathcal{L}_{VA} = -\frac{1}{4} \operatorname{Tr} \left(L_{\mu\nu}^{2} + R_{\mu\nu}^{2} \right) + \operatorname{Tr} \left| \left(\frac{m_{1}^{2}}{2} + \Delta \right) \left(L_{\mu}^{2} + R_{\mu\nu}^{2} \right) \right|$ $-2ig_{2}(\mathrm{Tr}\{L_{\mu\nu}[L^{\mu},L^{\nu}]\}+\mathrm{Tr}\{R_{\mu\nu}[R^{\mu},R^{\nu}]\})$ $L_{\mu\nu} = \partial_{\mu}L_{\nu} - \partial_{\nu}L_{\mu\nu}$ $L_{\mu\nu} = \mathcal{O}_{\mu}L_{\nu} - \mathcal{O}_{\nu}L_{\mu}$ $R_{\mu\nu} = \partial_{\mu}R_{\nu} - \partial_{\nu}R_{\mu}$ $\int_{\mu\nu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{N\mu} + \rho_{\mu}^{0}}{\sqrt{2}} & \rho_{\mu}^{+} & K_{\mu}^{*+} \\ \rho_{\mu}^{-} & \frac{\omega_{N\mu} - \rho_{\mu}^{0}}{\sqrt{2}} & K_{\mu}^{*0} \\ K_{\mu}^{*-} & \overline{K}_{\mu}^{*0} & \omega_{S\mu} \end{pmatrix} A_{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{f_{1N\mu} + a_{1\mu}^{0}}{\sqrt{2}} & a_{1\mu}^{+} & K_{1\mu}^{+} \\ \frac{a_{1\mu}^{-}}{\sqrt{2}} & a_{1\mu}^{+} & K_{1\mu}^{+} \\ a_{1\mu}^{-} & \frac{f_{1N\mu} - a_{1\mu}^{0}}{\sqrt{2}} & K_{1\mu}^{0} \\ K_{\mu}^{-} & \overline{K}_{\mu}^{0} & \omega_{S\mu} \end{pmatrix} A_{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{f_{1N\mu} + a_{1\mu}^{0}}{\sqrt{2}} & a_{1\mu}^{+} & K_{1\mu}^{+} \\ \frac{a_{1\mu}^{-}}{\sqrt{2}} & \frac{f_{1N\mu} - a_{1\mu}^{0}}{\sqrt{2}} & K_{1\mu}^{0} \\ K_{\mu}^{-} & \overline{K}_{\mu}^{0} & \sigma_{S\mu} \end{pmatrix} A_{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{f_{1N\mu} + a_{1\mu}^{0}}{\sqrt{2}} & \frac{f_{1N\mu} - a_{1\mu}^{0}}{\sqrt{2}} \\ \frac{f_{1N\mu} - f_{1N\mu} - f_{1N\mu}^{0}}{\sqrt{2}} \\ \frac{f_{1N\mu} - f_{1N\mu} - f_{1N\mu}^$ Denis Parganlija (TU Vienna / GU Frankfurt) Scalar and Axial-Vector Mesons in a Three-Flavour Sigma Model

Motivation: QCD Features in an Effective Model

QCD Lagrangian

$$\mathcal{L}_{QCD} = \bar{q}_f (i D - m_f) q_f + \text{Gluons}$$

Chirality Projection Operators

$$\mathcal{P}_{r,\ l} = rac{1\pm\gamma_5}{2}$$

 $\mathcal{L}_{QCD} = i \, \bar{q}_{r,f} \, D \, q_{r,f} + i \, \bar{q}_{l,f} \, D \, q_{l,f} - \bar{q}_{r,f} m_{f} q_{l,f} - \bar{q}_{l,f} m_{f} q_{r,f}$

Motivation: QCD Features in an Effective Model

Global Unitary Transformations

Chiral Symmetry Explicit Symmetry Breaking Spontaneously Broken in Vacuum In addition: Chiral U(1)₄ Anomaly

Motivation: Structure of Scalar Mesons

- Spontaneous Breaking of Chiral Symmetry \rightarrow Goldstone Bosons ($N_{\rm f}$ = 2 \rightarrow π)
- Restoration of Chiral Invariance and Deconfinement \leftrightarrow Degeneration of Chiral Partners (π/σ) $f_0(600)$, "sigma" $f_0(1370)$
- Nature of scalar mesons
- Scalar $q\overline{q}$ states under 1 GeV $\rightarrow f_0(600)$, $a_0(980) - \text{not}$ preferred by $N_f = 2$ results
- Scalar $q\bar{q}$ states above 1 GeV $\rightarrow f_0(1370)$, $a_0(1450) - preferred$ by $N_f = 2$ results

[Parganlija, Giacosa, Rischke in Phys. Rev. D 82: 054024, 2010; arXiv: 1003.4934]

Calculating the Parameters

Shift the (axial-)vector fields:

 $\begin{array}{ccc} f_{1N}^{\mu} \rightarrow f_{1N}^{\mu} + w_{f_{1N}} \partial^{\mu} \eta_{N} & f_{1S}^{\mu} \rightarrow f_{1S}^{\mu} + w_{f_{1S}} \partial^{\mu} \eta_{S} \\ \vec{a}_{1}^{\mu} \rightarrow \vec{a}_{1}^{\mu} + w_{a_{1}} \partial^{\mu} \vec{\pi} & K_{1}^{\mu} \rightarrow K_{1}^{\mu} + w_{K_{1}} \partial^{\mu} K & K^{*\mu} \rightarrow K^{*\mu} + w_{K^{*}} \partial^{\mu} K_{S} \end{array}$

- Canonically normalise pseudoscalars and K_S: η_{N,S} → Z_{η_{N,S}}η_{N,S} π → Z_ππ K → Z_KK K_S → Z_{K_S}K_S
 Perform a fit of all parameters except g₂ (fixed via ρ → ππ)
- 9 parameters, none free \rightarrow fixed via masses m_{π}, m_{K} $m_{\eta}, m_{\eta'} \leftrightarrow m_{\eta_{N}}, m_{\eta_{S}}$ $m_{\rho}, m_{K^{*}}$ $m_{\omega_{S}} \equiv m_{\varphi(1020)}, m_{f_{1S}} \equiv m_{f_{1}(1420)}$ [Parganlija, Giacosa, Rischke $m_{a_{1}} \equiv m_{a_{1}(1260)}, m_{K_{1}} \equiv m_{K_{1}(1270)}$ [Parganlija, Giacosa, Rischke in Phys. Rev. D 82: 054024, 2010; arXiv: 1003.4934] $m_{a_{0}} \equiv m_{a_{0}(1450)}, m_{K_{S}} \equiv m_{K_{0}^{*}(1430)}$ [Preliminary : no fit with Scalar and Axial-Vector Mesons in a Three-Flavour Sigma Model $m_{a_{0}} < 1 \text{ GeV}, m_{K_{S}} < 1 \text{ GeV}$

Other Results

• $\eta - \eta'$ mixing angle $\theta_{\eta} = 43.9^{\circ} \leftrightarrow \text{KLOE}$ Collaboration: $\theta_{\eta} = 41.4^{\circ} \pm 0.5^{\circ}$

Rho meson mass has two contributions:

$$m_{\rho}^{2} = (m_{1}^{2}) + (\phi_{N}^{2}) [h_{1} + h_{2} + h_{3}] + \frac{h_{1}}{2} (\phi_{S}^{2})$$

- ~ Gluon Condensate Quark Condensates We obtain $m_1 \propto 761 \,\text{MeV}$
- $K^* \to K\pi$

Data: 48.7 MeV Our value: 44.2 MeV

• $\varphi(1020) \rightarrow K^+ K^-$ Data: 2.08 MeV Our value: 2.33 MeV

Note: $N_f = 2$ Limit

The f₀(600) state not preferred to be quarkonium

Note: $N_f = 2$ Limit

Scenario II (N_f =2): Scattering Lengths

Scattering lengths saturated

- Additional scalars: tetraquarks, quasimolecular states
- Glueball

Scenario II (*N_f* =2): Parameter Determination

• Masses: $m_{\pi}, m_{\eta}, m_{a_0}, m_{\rho}, m_{a_1}$ • Pion Decay Constant $f_{\pi} = \frac{\phi}{Z}$ • Five Parameters: Z, h_1 , h_2 , g_2 , m_{σ} $\Gamma_{\rho \to \pi\pi} = (149.4 \pm 1.0) \operatorname{MeV} \Rightarrow g_2 = g_2(Z)$ $\Gamma_{a_0(1450)} = (265 \pm 13) \operatorname{MeV} \Rightarrow h_2 = h_2(Z)$ $h_1 \equiv 0 \left(h_{2.3} \text{ small} \right)$ $\Gamma_{a_1 \to \pi \gamma}[Z] = (0.640 \pm 0.246) \,\mathrm{MeV} \to Z$ $m_{\sigma} \equiv m_{f_0(1370)}$ free

Scenario I (*N_f* = 2): Other Results

• $\Gamma_{\rho \to \pi \pi}[Z, g_2], \Gamma_{f_1 \to a_0 \pi}[Z, h_2]$ exact Our Result **Experimental Value** $\Gamma_{a_1 \to \pi \gamma} = 0.640 \,\mathrm{MeV}$ $a_0^0 = 0.218$ $a_0^2 = -0.0454$
$$\begin{split} \varGamma_{a_1 \to \pi \gamma} &= 0.640 \, \mathrm{MeV} \\ a_0^0 &= 0.218 \, (\mathrm{NA48/2}) \\ a_0^2 &= -0.0457 \, (\mathrm{NA48/2}) \end{split}$$
 $A_{a_0 \to \eta \pi} = 3330 \,\mathrm{MeV}$ $A_{a_0 \to \eta \pi} = 3330 \,\mathrm{MeV}$ $\eta - \eta'$ mixing angle : 41.8^{+0.5}_{-0.2} deg [D. V. Bugg et al., [KLOE Collaboration, hep-ex/0612029v3]: Phys. Rev. D 50, 4412 (1994)] $\eta - \eta'$ mixingangle: 41.4±0.5 deg

Scenario I ($N_f = 2$): $a_1 \rightarrow \sigma \pi$ Decay

• $m_1 = 0 \rightarrow m_\rho$ generated from the quark condensate only; our result: $m_1 = 652$ MeV

Comparison: the Model with and without Vectors and Axial-Vectors (N_f=2)

Scenario I ($N_f = 2$): $a_1 \rightarrow \rho \pi$ Decay

Scenario I (N_f =2) : Parameter Determination

Three Independent Parameters: Z, m_1 , m_{σ}

$$\Gamma_{a_1 \to \pi \gamma}[Z] = (0.640 \pm 0.246) \text{ MeV} \to Z = 1.67 \pm 0.20$$
$$m_{\rho}^2 = m_1^2 + \frac{\phi^2}{2} [h_1 + h_2(Z) + h_3(Z)] \quad m_1 = 652^{+123}_{-652} \text{ MeV}$$

 $\begin{array}{c|c} \sim & \textbf{Gluon Condensate} & \textbf{Quark Condensate} \\ \text{[S. Janowski (Frankfurt U.), Diploma Thesis, 2010]} \\ \textbf{Isospin} & \textbf{m}_{\sigma} \in [288, 477] \, \text{MeV} \end{array}$

 $a_0^{0}[Z, m_1, m_{\sigma}] = 0.218 \pm 0.020 [m_{\pi}^{-1}]$

[NA48/2 Collaboration, 2009]

Angular Momentum (s wave)

Lagrangian of a Linear Sigma Model with Vector and Axial-Vector Mesons ($N_f = 2$) Vectors and Axial-Vectors $\mathcal{L}_{VA} = -\frac{1}{4} \operatorname{Tr} \left[(L^{\mu\nu})^2 + (R^{\mu\nu})^2 \right] + \left(\frac{m_1^2}{2} + \Delta \right) \operatorname{Tr} \left[(L^{\mu\nu})^2 + (R^{\mu\nu})^2 \right]$ $-2ig_{2}(\mathrm{Tr}\{L_{\mu\nu}[L^{\mu},L^{\nu}]\}+\mathrm{Tr}\{R_{\mu\nu}[R^{\mu},R^{\nu}]\})$ $-2g_{3}\{\mathrm{Tr}[(\partial_{\mu}L_{\nu}-ieA_{\mu}[t^{3},L_{\nu}]+\partial_{\nu}L_{\mu}-ieA_{\nu}[t^{3},L_{\mu}])\{L^{\mu},L^{\nu}\}\}$ + Tr [$(\partial_{\mu}R_{\nu} - ieA_{\mu}[t^3, R_{\nu}] + \partial_{\nu}R_{\mu} - ieA_{\nu}[t^3, R_{\mu}])\{R^{\mu}, R^{\nu}\}]\}$ $L^{\mu\nu} = \partial^{\mu}L^{\nu} - \partial^{\nu}L^{\mu} - (ieA^{\mu}[t^{3}, L^{\nu}] - ieA^{\nu}[t^{3}, L^{\mu}])$ $R^{\mu\nu} = \partial^{\mu}R^{\nu} - \partial^{\nu}R^{\mu} - (ieA^{\mu}[t^3, R^{\nu}] - ieA^{\nu}[t^3, R^{\mu}])$ $\delta_n(m_{u,d}^2)$ vectors $\delta_{n}(m_{n,d}^{2})$ $\delta(m)$ axialvectors Denis Parganlija (TU Vienna / GU Frankfurt) Scalar and Axial-Vector Mesons in a Three-

Flavour Sigma Model

Lagrangian of a Linear Sigma Model with Vector and Axial-Vector Mesons ($N_f = 2$)

Scalars and Pseudoscalars $\mathcal{L}_{sp} = \mathrm{Tr}[(D^{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)] - m_0^2 \mathrm{Tr}(\Phi^{\dagger}\Phi) - \lambda_1[\mathrm{Tr}(\Phi^{\dagger}\Phi)]^2 - \lambda_2 \mathrm{Tr}(\Phi^{\dagger}\Phi)^2$ +(Ir $[H(\Phi + \Phi^{\dagger})] \oplus c[(\det \Phi + \det \Phi^{\dagger})^2 - 4\det(\Phi\Phi^{\dagger})^2]$ **Chiral Anomaly Explicit Symmetry Breaking** scalars $=(\sigma + i\eta)t^0 + (\overline{a_0} + i\pi)\cdot t$ ${f \Phi}$ pseudoscalars $D^{\mu}\Phi = \partial^{\mu}\Phi + ig_1(\Phi R^{\mu} - L^{\mu}\Phi) - ieA^{\mu}[t^3,\Phi]$ photon

 $\{\sigma, a_0\} \rightarrow \{f_0(600), a_0(980)\} \text{ or } \{f_0(1370), a_0(1450)\}$ Where is the scalar $\overline{q}q$ state? Denis Parganlija (TU Vienna / GU Frankfurt)