

Krzysztof Woźniak, IFJ PAN, Krakow for the ATLAS Collaboration

The ATLAS detector

The ATLAS detector

Data collected in 2010-2011

 $dN_{ch}/d\eta$ distribution in a wide pseudorapidity range $|\eta|$ <2.5

three energies available: 900 GeV, 2.36 TeV and 7 TeV

- an increase in the number of particles by a factor ~2 from 900 GeV to 7 TeV
- data above predictions from all models

New. J. Phys. 13 (2011) 053033.

Particle pseudorapidity density at η =0

An attempt to identify regions with a better data-MC agreement:

- energy dependence studied
- minimal transverse momentum p₁>100 MeV or p₁>500 MeV
- ◆ events with different minimal number of tracks (n_{ch}≥1, n_{ch}≥2 or n_{ch}≥6)

Data points always above predictions from Monte Carlo models

New. J. Phys. 13 (2011) 053033.

 dN_{ch}/dp_{T} distribution

measured yields range up to 10 orders of magnitude

- differences in some p_τ ranges
- PHOJET closest to the data

 dN_{ev}/dn_{ch} distribution

- differences in low n_{ch} region possibly due to large diffractive component
- poor agreement at large n_{ch}

Two-particle correlations

$$R(\Delta \eta, \Delta \phi) = \frac{\langle (n_{ch} - 1) F(n_{ch}, \Delta \eta, \Delta \phi) \rangle_{ch}}{\langle B(n_{ch}, \Delta \eta, \Delta \phi) \rangle_{ch}} - \frac{\langle (n_{ch} - 1) B(n_{ch}, \Delta \eta, \Delta \phi) \rangle_{ch}}{\langle B(n_{ch}, \Delta \eta, \Delta \phi) \rangle_{ch}}$$
$$F(n_{ch}, \Delta \eta, \Delta \phi) = \left\langle \frac{2}{n_{ch}(n_{ch} - 1)} \sum_{i} \sum_{j \neq i} \delta(\eta_{i} - \eta_{j} - \Delta \eta) \delta(\phi_{i} - \phi_{j} - \Delta \phi) \right\rangle$$

 $B(n_{ch}, \Delta \eta, \Delta \phi)$ – background obtained from single particle distribution

arXiv:1203.3549v1 [hep-ex]

Krzysztof Wozniak, Latest QCD results in p+p and Pb+Pb collisions from ATLAS, Excited QCD 2012

 \sim

Two-particle correlations in pseudorapidity, integrated over $\Delta \varphi$:

- narrower at larger energy
- narrower in the events with higher multiplicity (not shown here)
- MC does not describe R(Δη) satisfactorily

arXiv:1203.3549v1 [hep-ex]

Two-particle correlations in azimuth, integrated over $\Delta \eta$ in short-range (0< $\Delta \eta$ <2) or long-range (2< $\Delta \eta$ <5):

- short-range correlation: the main maximum at $\Delta \phi$ =0 increases with energy, the second maximum at $\Delta \phi$ = π is approximately constant
- long-range correlations: a maximum at $\Delta \phi = \pi$ only
- MC describes the shape of $R(\Delta \varphi)$, but not the correlation strength

arXiv:1203.3549v1 [hep-ex]

Forward-backward multiplicity correlation in symmetric bins in pseudorapidity:

- stronger in 7 TeV than at 900 GeV
- correlation decreasing with the distance in η
- correlation falling down with transverse momentum (not shown)
- MC models give similar correlations, but predict different values and/or different trends

$$\rho_{fb} = \frac{\langle (n_f - \langle n_f \rangle) (n_b - \langle n_b \rangle) \rangle}{\sqrt{\langle (n_f - \langle n_f \rangle)^2 \rangle \langle (n_b - \langle n_b \rangle)^2 \rangle}}$$

Dijet azimuthal decorrelation

- QCD predicts azimuthal decorrelation especially in the multijet events
- MC models successfully describe the measured distributions

Phys.Rev.Lett. 106 (2011) 172002.

Disappearance of one of the jets - attributed to interactions of partons in the hot and dense medium created in heavy ion collisions.

Quantitative description of the jet suppression:

dijet energy asymmetry

$$A_J = \frac{E_{TI} - E_{T2}}{E_{TI} + E_{T2}}$$
$$\Delta \phi = \left| \phi_1 - \phi_2 \right|$$

Phys.Rev.Lett. 105 (2010) 252303. ATLAS-CONF-2011-075.

- in peripheral collisions is similar to that in pp collisions
- becomes much larger for more central events
- in HIJING+PYTHIA the dependence on centrality is much smaller.

ATLAS-CONF-2011-075.

Azimuthal dijet decorrelation almost independent of centrality (with some combinatoric contribution for 0-20% centrality)

ATLAS-CONF-2011-075.

Azimuthal dijet decorrelation almost independent of centrality (no combinatoric contribution for R=0.2)

Yields per collision

Absolute yields

Jet yields in PbPb collisions at 2.76 TeV:

- increase with centrality of PbPb collisions (~30 times)
- after scaling by the number of nucleon-nucleon collisions the trend becomes opposite - in peripheral collisions scaled yields are ~ 2 times larger

ATLAS-CONF-2011-075.

R=0.4

Relative jet yields - yields for centrality 0-10%, ..., 50-60% divided by the yield for peripheral collisions (60-80%):

- similar dependence on centrality in different jet energy ranges
- R_{CP} is smaller for more energetic jets

ATLAS-CONF-2011-075.

R=0.2

Relative jet yields - yields for centrality 0-10%, ..., 50-60% divided by the yield for peripheral collisions (60-80%):

the same R_{CP} in all three jet energy ranges

ATLAS-CONF-2011-075.

Transverse and logitudinal structure of jets

Comparison of longitudinal structure in 0-10% and 40-80% centralities

No evidence of significant softening of jets.

ATLAS-CONF-2011-075.

21

Particle production in PbPb collisions

Charged particle spectra

Charged particle R_{CP}

Charged particle spectra in PbPb collisions at 2.76 TeV:

- measured up to ~30 GeV as a function of centrality and η (not shown)
- R_{CP} drops between 2-7 GeV to the values observed at RHIC
- above 7 GeV R_{CP} increases reaching 0.5 for the most central collisions

ATLAS-CONF-2011-079.

Particle production in PbPb collisions

- for J/ ψ R_{CP}=0.5 for the most central collisions
- Z boson and W boson measurements are consistent with no suppression, R_{CP}=1

Phys.Lett. B697 (2011) 294-312, ATLAS-CONF-2011-078.

Flow in PbPb collisions - event plane method

Overlap of the nuclei has approximately elliptic shape:

$$\Psi_2 = \frac{dN}{d(\phi - \psi_2)} \sim 1 + 2v_2 \cos(2(\phi - \psi_2))$$

Due to fluctuations of nucleon positions the shape of the overlap is frequently deformed and higher order components of a Fourier series are necessary:

$$\frac{\Psi_{3}}{\Psi_{2}} = \frac{dN}{d(\varphi - \Psi_{2})} \sim 1 + 2\sum_{n=1}^{\infty} v_{n} \cos(n(\varphi - \Psi_{n}))$$

$$\Psi_{4}$$

Components up to n=6 are large enough to be determined with sufficient accuracy.

Presence of flow is explained by hydrodynamics and requires a fluid with very low viscosity.

Phys.Lett. B707 (2012) 330-348.

Flow in PbPb collisions - event plane method

Phys.Lett. B707 (2012) 330-348.

η

Flow in PbPb collisions - event plane method

 $v_2^{\frac{\pi}{1/2}}$

Comparison of v_n values:

- v₂ is the largest with exception of the most central events
- dependence on p_T for all v_n components is similar, they increase with p_T up to 3–4 GeV and then decrease
- approximate scaling of

arXiv:1203.3087v2 [hep-ex]

Flow in PbPb collisions - two particle correlations method

10-20%

arXiv:1203.3087v2 [hep-ex]

Decomposition of two-particle correlations:

$$\frac{dN}{d\,\Delta\,\phi} \sim 1 + 2\sum_{n=1}^{\infty} v_{n,n} \cos(n\,\Delta\,\phi)$$

Factorization in the case of collective expansion:

$$v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a)v_n(p_T^b)$$

- Calculations of v_{n.n} coefficients in slices of $|\Delta \eta|$ and p_{τ}
- in central and semicentral collisions for $|\Delta \eta|$ >2 and p_{τ} < 3 GeV factorization of coefficients expected in collective expansion and reflecting initial nucleon fluctuations is valid
- no factorization for larger momenta (effects from jets) and v_{11} (momentum conservation)

28

New data to be collected

• pp collisions at 8 TeV

• pPb collisions in November 2012

Krzysztof Wozniak, Latest QCD results in p+p and Pb+Pb collisions from ATLAS, Excited QCD 2012

Particle production in PbPb collisions

Charged particle multiplicity:

- three reconstruction methods applied
- measurements without magnetic field used to register particles with p_T downto 30 MeV
- multiplicity increasing with energy faster than logarithmically, but slower than predicted by Landau hydrodynamics
- the centrality dependence of particle density scaled by the number of participants (at η=0) has the same shape as at RHIC when the factor of 2 increase is taken into account

Phys.Lett.B710 (2012) 363-382.

Asymmetry increasing for more central events Values of A, obtained for R=0.2 are very close to that for R=0.4

Absolute yields

Jet yields in PbPb collisions at 2.76 TeV:

- increase with centrality of PbPb collisions (~30 times)
- after scaling by the number of nucleon-nucleon collisions the trend becomes opposite - in peripheral collisions scaled yields are ~ 2 times larger

ATLAS-CONF-2011-075.

THE SAME TREND

Three ranges of leading jet energy: 100-125 GeV, 125-150 GeV, 150-200 GeV asymmetry more pronounced for lower energy of the leading jet

ATLAS-CONF-2011-075.

Disapperance of jets at LHC

Centrality of PbPb collisions

Distribution of the signals registered in the Forward Calorimeter (FCal) is divided into bins with the same number of events (10% of the total).

Fraction of the sampled non-Coulomb inelastic cross section after all trigger selection cuts is estimated to be 100% $\pm 2\%$

