Latest QCD results in p+p and Pb+Pb collisions from ATLAS

Krzysztof Woźniak, IFJ PAN, Krakow
for the ATLAS Collaboration
The ATLAS detector

Krzysztof Wozniak, Latest QCD results in p+p and Pb+Pb collisions from ATLAS, Excited QCD 2012
Data collected in 2010-2011

ATLAS Online Luminosity $\sqrt{s} = 7$ TeV

pp 2010
- Total Delivered: 48.1 pb$^{-1}$
- Total Recorded: 45.0 pb$^{-1}$

pp 2011
- Total Delivered: 5.61 fb$^{-1}$
- Total Recorded: 5.25 fb$^{-1}$

ATLAS Online Luminosity $\sqrt{s_NN} = 2.76$ TeV

PbPb 2010
- Total Delivered: 166 ub$^{-1}$
- Total Recorded: 158 ub$^{-1}$

PbPb 2011
- ~160 μb$^{-1}$
Particle production

d\(\frac{dN_{\text{ch}}}{d\eta}\) distribution in a wide pseudorapidity range \(|\eta|<2.5\)

- three energies available: 900 GeV, 2.36 TeV and 7 TeV
- an increase in the number of particles by a factor ~2 from 900 GeV to 7 TeV
- data above predictions from all models

Particle production

Particle pseudorapidity density at $\eta=0$

An attempt to identify regions with a better data-MC agreement:
- energy dependence studied
- minimal transverse momentum $p_T>100$ MeV or $p_T>500$ MeV
- events with different minimal number of tracks ($n_{ch} \geq 1$, $n_{ch} \geq 2$ or $n_{ch} \geq 6$)

Data points always above predictions from Monte Carlo models

measured yields range up to 10 orders of magnitude
• differences in some p_T ranges
• PHOJET closest to the data

Particle production

dN_{ev}/dN_{ch} distribution

- differences in low n_{ch} region possibly due to large diffractive component
- poor agreement at large n_{ch}

Two-particle correlations

\[R(\Delta \eta, \Delta \phi) = \frac{\langle (n_{ch} - 1) F(n_{ch}, \Delta \eta, \Delta \phi) \rangle_{ch}}{\langle B(n_{ch}, \Delta \eta, \Delta \phi) \rangle_{ch}} - \frac{\langle (n_{ch} - 1) B(n_{ch}, \Delta \eta, \Delta \phi) \rangle_{ch}}{\langle B(n_{ch}, \Delta \eta, \Delta \phi) \rangle_{ch}} \]

\[F(n_{ch}, \Delta \eta, \Delta \phi) = \left\langle \frac{2}{n_{ch}(n_{ch}-1)} \sum_{i} \sum_{j \neq i} \delta(\eta_i - \eta_j - \Delta \eta) \delta(\phi_i - \phi_j - \Delta \phi) \right\rangle \]

\[B(n_{ch}, \Delta \eta, \Delta \phi) \] — background obtained from single particle distribution

\textit{arXiv:1203.3549v1 [hep-ex]}
Two-particle correlations in pseudorapidity, integrated over $\Delta \phi$:

- narrower at larger energy
- narrower in the events with higher multiplicity (not shown here)
- MC does not describe $R(\Delta \eta)$ satisfactorily

$\sqrt{s} = 900$ GeV, $n_{ch} \geq 2$

$0 < \Delta \phi < \pi$

ATLAS

$\sqrt{s} = 7$ TeV, $n_{ch} \geq 2$

$0 < \Delta \phi < \pi$

ATLAS

arXiv:1203.3549v1 [hep-ex]
Two-particle correlations in azimuth, integrated over $\Delta \eta$ in short-range ($0 < \Delta \eta < 2$) or long-range ($2 < \Delta \eta < 5$):

- **Short-range correlation**: the main maximum at $\Delta \phi = 0$ increases with energy, the second maximum at $\Delta \phi = \pi$ is approximately constant.
- **Long-range correlations**: a maximum at $\Delta \phi = \pi$ only.
- **MC describes the shape of $R(\Delta \phi)$, but not the correlation strength**.

arXiv:1203.3549v1 [hep-ex]
Forward-backward multiplicity correlation in symmetric bins in pseudorapidity:

- stronger in 7 TeV than at 900 GeV
- correlation decreasing with the distance in η
- correlation falling down with transverse momentum (not shown)
- MC models give similar correlations, but predict different values and/or different trends

\[
\rho_{fb} = \frac{\left\langle (n_f - \langle n_f \rangle)(n_b - \langle n_b \rangle) \right\rangle}{\sqrt{\left\langle (n_f - \langle n_f \rangle)^2 \right\rangle \left\langle (n_b - \langle n_b \rangle)^2 \right\rangle}}
\]
Partons producing jets are emitted back-to-back \((\Delta \phi \approx \pi)\)

QCD predicts azimuthal decorrelation especially in the multijet events

MC models successfully describe the measured distributions

Disappearance of one of the jets - attributed to interactions of partons in the hot and dense medium created in heavy ion collisions.

Quantitative description of the jet suppression:

- dijet energy asymmetry

\[A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}} \]

- dijet azimuthal angle difference

\[\Delta \phi = \left| \phi_1 - \phi_2 \right| \]
Asymmetry of jet energy in PbPb collisions at 2.76 TeV:
- in peripheral collisions is similar to that in pp collisions
- becomes much larger for more central events
- in HIJING+PYTHIA the dependence on centrality is much smaller.

\[A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}} \]

jet size parameter \(R = 0.4 \)
Jets in PbPb collisions

Azimuthal dijet decorrelation almost independent of centrality
(with some combinatoric contribution for 0-20% centrality)

\[\Delta \phi = |\phi_1 - \phi_2| \]

ATLAS-CONF-2011-075.
Jets in PbPb collisions

Azimuthal dijet decorrelation almost independent of centrality (no combinatoric contribution for R=0.2)

\[\Delta \phi = |\phi_1 - \phi_2| \]

ATLAS-CONF-2011-075.
Jets in PbPb collisions

Jet yields in PbPb collisions at 2.76 TeV:
- increase with centrality of PbPb collisions (~30 times)
- after scaling by the number of nucleon-nucleon collisions the trend becomes opposite - in peripheral collisions scaled yields are ~ 2 times larger

ATLAS-CONF-2011-075.
Jets in PbPb collisions

Relative jet yields - yields for centrality 0-10%, ..., 50-60% - divided by the yield for peripheral collisions (60-80%):

\[
R_{CP} = \frac{1}{N_{coll}^{centr}} \frac{1}{N_{ev}^{centr}} \frac{\frac{dN_{jet}^{centr}}{dE_T}}{\frac{dN_{jet}^{60-80\%}}{dE_T}}
\]

- similar dependence on centrality in different jet energy ranges
- \(R_{CP}\) is smaller for more energetic jets

ATLAS-CONF-2011-075.
Jets in PbPb collisions

Relative jet yields - yields for centrality 0-10%, ..., 50-60% - divided by the yield for peripheral collisions (60-80%):

\[R_{CP} = \frac{\frac{1}{N_{\text{coll}}^{\text{centr}}} \cdot \frac{1}{N_{\text{ev}}^{\text{centr}}} \cdot \frac{dN_{\text{jet}}^{\text{centr}}}{dE_T}}{\frac{1}{N_{\text{coll}}^{60-80\%}} \cdot \frac{1}{N_{\text{ev}}^{60-80\%}}} \cdot \frac{dN_{\text{jet}}^{60-80\%}}{dE_T} \]

\(R = 0.2 \)

\(\Rightarrow \) the same \(R_{CP} \) in all three jet energy ranges
Jets in PbPb collisions

Transverse and longitudinal structure of jets

\[j_T = p_T^{\text{had}} \sin(\Delta R) \]
\[z = \frac{p_T^{\text{had}}}{E_T} \cos(\Delta R) \]

Comparison of longitudinal structure in 0-10% and 40-80% centralities

- No evidence of significant softening of jets.

ATLAS-CONF-2011-075.
Particle production in PbPb collisions

Charged particle spectra in PbPb collisions at 2.76 TeV:
- measured up to ~30 GeV as a function of centrality and \(\eta \) (not shown)
- \(R_{CP} \) drops between 2-7 GeV to the values observed at RHIC
- above 7 GeV \(R_{CP} \) increases reaching 0.5 for the most central collisions

ATLAS-CONF-2011-079.
for J/ψ $R_{CP}=0.5$ for the most central collisions

Z boson and W boson measurements are consistent with no suppression, $R_{CP}=1$
Due to fluctuations of nucleon positions the shape of the overlap is frequently deformed and higher order components of a Fourier series are necessary:

$$dN \over d(\phi - \psi_n) \sim 1 + 2v_n \cos(n(\phi - \psi_n))$$

Components up to $n=6$ are large enough to be determined with sufficient accuracy.

Presence of flow is explained by hydrodynamics and requires a fluid with very low viscosity.

Elliptic flow v_2 dependence on

- transverse momentum
- pseudorapidity

in the most central events flow is small

the largest v_2 values are obtained for centrality 30-50%

the maximal v_2 value is reached for transverse momentum 3-4 GeV

v_2 is approximately flat in the pseudorapidity range $|\eta| < 2$

Comparison of v_n values:

- v_2 is the largest - with exception of the most central events
- dependence on p_T for all v_n components is similar, they increase with p_T up to 3–4 GeV and then decrease
- approximate scaling of $\frac{v_n^{1/n}}{v_2^{1/2}}$

[Graphs and plots showing the comparison of v_n values across different pseudorapidity bins and p_T ranges.]

arXiv:1203.3087v2 [hep-ex]
Flow in PbPb collisions - two particle correlations method

Decomposition of two-particle correlations:

\[
\frac{dN}{d\Delta \phi} \sim 1 + 2 \sum_{n=1}^{\infty} v_{n,n} \cos(n \Delta \phi)
\]

Factorization in the case of collective expansion:

\[
v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a) v_n(p_T^b)
\]

- Calculations of \(v_{n,n}\) coefficients in slices of \(|\Delta \eta|\) and \(p_T\)
- in central and semicentral collisions for \(|\Delta \eta|>2\) and \(p_T < 3\) GeV
 factorization of coefficients expected in collective expansion and reflecting initial nucleon fluctuations is valid
- no factorization for larger momenta (effects from jets) and \(v_{1,1}\) (momentum conservation)

arXiv:1203.3087v2 [hep-ex]
Analysis of PbPb data from 2011

Preliminary performance results

\[\frac{dN}{dm_{\mu\mu}} \text{ [GeV-1]} \]

\[m_{\mu\mu} \text{ [GeV]} \]

- Pb+Pb data 2011
- \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)
- \(\int L dt \approx 40 \mu b^{-1} \)
- \(p_T^{\mu^+}, p_T^{\mu^-} > 3 \text{ GeV} \)
New data to be collected

- **pp collisions at 8 TeV**

- **pPb collisions in November 2012**
Particle production in PbPb collisions

Charged particle multiplicity:
- three reconstruction methods applied
- measurements without magnetic field used to register particles with p_T downto 30 MeV
- multiplicity increasing with energy faster than logarithmically, but slower than predicted by Landau hydrodynamics
- the centrality dependence of particle density scaled by the number of participants (at $\eta=0$) has the same shape as at RHIC - when the factor of 2 increase is taken into account

Asymmetry increasing for more central events
Values of A_J obtained for $R=0.2$ are very close to that for $R=0.4$

ATLAS-CONF-2011-075.
Jet yields in PbPb collisions at 2.76 TeV:

- increase with centrality of PbPb collisions (~30 times)
- after scaling by the number of nucleon-nucleon collisions the trend becomes opposite - in peripheral collisions scaled yields are ~ 2 times larger

ATLAS-CONF-2011-075.
Jets in PbPb collisions

Three ranges of leading jet energy: 100-125 GeV, 125-150 GeV, 150-200 GeV

- asymmetry more pronounced for lower energy of the leading jet

\[A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}} \]

\(R = 0.4 \)

ATLAS-CONF-2011-075.
Disappearance of jets at LHC

\[p+p \]

\[\text{Calorimeter Towers} \]

\[\text{Tracks} \]

\[\text{ATLAS} \]

\[\text{Run: 169045} \]
\[\text{Event: 1914004} \]
\[\text{Date: 2010-11-12} \]
\[\text{Time: 04:11:44 CET} \]

Krzysztof Wozniak, Latest QCD results in p+p and Pb+Pb collisions from ATLAS, Excited QCD 2012
Centrality of PbPb collisions

Distribution of the signals registered in the Forward Calorimeter (FCal) is divided into bins with the same number of events (10% of the total).

Fraction of the sampled non-Coulomb inelastic cross section after all trigger selection cuts is estimated to be $100\% \pm 2\%$.