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|. The mysterious X(3872)

Experimental features:
e The existencence of the X(3872) is very well established.

e |t was discovered by the Belle Collaboration, in 2003, in the decay
BY — KErtn=J/i.

e |t is a "charmonium-like state”.
o It has two possible JPC assignments, 1 or 2.
e Mass: m = 3871.57 £ 0.25 MeV/c?, T < 2.3 MeV/c?. (PDG(2010))

e Hadronic decay modes: p°J/v, wJ/v» and DD,



Theoretical enigma:

o The X(3872) does not fit in the conventional models for gg mesons.
o It lies very close to the D°D*" threshold.

¢ It has an isospin violating and two OZl-supressed hadronic decays.

© Angular momentum and parity are very hard to determine
experimentally.

© This enhancement is an actual challenge to the theorists, who try to
predict and describe it through a panoplly of approaches, namelly,
molecules.



Our Motivation:

In a previous study of the X(3872) (Eur. Phys. J. C (2011) 71:1762), we
employed the Resonance Spectrum Expansion formalism, with nine

coupled-channels, including the p°J/+ and the wJ/psi. We got very optimistic
results:
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e In the view of this results, which are encouraged to believe that no molecular
(or other exotic) description is needed, so fast, to describe this state.

e Also, we are motivated by the work of Eric Braaten and Meng Lu (PRD 76,
094028 (2007)) which considering the X(3872) as a D° — D** molecule, with
17, conclude it fits to a bound state below the D°D*°.

e However, the analysis of the wave function probabilities should give us a
description of the dominant modes. This, in principle, is realized by a
two-channel Schrodinger potential model.

e Then, the goal of this work, still in progress, is to study the probabilities of
the two-component wave-function within a c¢& — D°D*°. If the probablibily of
the c¢ component does not vanish near the threshold, then the X(3872) is not
a molecule.



Il.LA simple two-channels model for hadronic resonances

Let us consider a qg — MM system. g-quark, M-meson.
The qg state is confined through an harmonic-oscilator (H.O.) potential. The
MM final state is composed of two free mesons.

Then, we write the radial Schrodinger equation:
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At some 'string breaking' distance a, one can have a point transition from one
state to the other. Then, this two-channels are coulpled, with strengh g,
through a potential of the type:
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The boundary conditions of this problem are:

WL 1 a) — ul(r | 3) + guf(a) —0

U(r T a)—ui(r ] a)+ jfjf ue(a) = 0

c

uc(r1a)=uc(r| a)
ur(r 1 a) = ur(r | a)



A general solution for this problem is given by:

AcF(r) r<a
uc(r) =
B.Gc(r) r>a

Where Fc(r) is a function which vanishes at the origin and Gc(r) is a function
E—2m. _ lc+3/2
2w 2

which dumps exponentially at infinity. If z = pwr® and v =
they are defined by:
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Now the MM, or final state solution:

Ar i, (kr) r<a
ur(r) =
By [J,f(kr)kz’f“ cot (8, (E)) — N,f(kr)] r>a
With,

Ji(kr) = k™' rji(kr)
Ni(kr) = k"™ (k)



From the boundary conditions, we get the relations:

Gi(r)Fc(a) — Fi(a)Gc(a) = %J/f(ka)Fc(a)%Z

i (ka) Ny, (ka) — Ji;(ka)Nj, (ka) = &40 Jj, (ka)Fe(a) 32

And also, one can verify that the Wronskian gives:

W(Fc(a), Ge(a)) = lim,o[Fe(r)GE(r) — F(r)Ge(r)] = 1

W (N, (ka), Ji, (ka)) = Iim,_>3[N/f(kr)J,'f(kr) — N,/f(kr)J/f(kr)] =

It follows that the partial amplitudes of the wave function relate as:

ABr = — M A B,
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Then, the cotangent comes:

-1
ka)
E)) = 2‘“k ka)F.(2)G. i
cot (6, (E)) Ji ) Fe(2)Ge(a) |+ 3
Which relates to the scattering matrix through S;,(E) = e ) 1t comes,

finally, an expression for S:
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The poles of the S-matrix are interpreted as resonances or bound states.



Setting the amplitudes:

Ac=1
_ Fc(a)
Be = )
Ar—2 1
¢ 7, ()6a(@)
Br = —& 4 (ka)Fc(a)

The radial wave functions R(r), where u(r) = rR(r), are fully determined.

Fe(r)

r

r<a
R.(r) =

1 .
o tayca) i (k) r<a

Re(r) =
[— g%kj/f(ka)Fc(a)] [j,f(kr) cot (5,(E)) — n,,(kr)] r>a



lIl. The cc — D°D*® system

Now we apply this formalism to the case of the coupled c&¢ — D°D*®. In the
confined channel we have cc, with /. = 1 while in the final two-meson channel
we have D°D*?, where Iy = 0. To this system, we compute:

Me = ZM¢
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The S-matrix poles are given by:
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The coupling g and ’string-breaking’ distance a are left as free parameters. In
the following table we summarize the employed parameter values:

Parameter w mc mpo Mmp+«o Mmpo + Mp«o
Value (MeV) || 190 | 1562 | 1864.84 | 2006.97 3871.81

For integer values of v, the poles of the S-matrix shall be eigenvalues of the
H.O., for which case the two channels decouple.

v 0 1 2
E(MeV) | 3599 3979 4359

Table: Eigenvalues of the H.O.



IV. Preliminary results

'String Breaking’ a | Coupling g | Solution | Type
2.0 1.150 3871.81 | virtual
2.0 1.153 3871.81 real
2.0 1.127 3871.56 | virtual
2.0 1.177 3871.57 real
2.5 1.372 3871.81 | virtual
2.5 1.377 3871.81 real
3.0 2.144 3871.81 | virtual
3.0 2.150 3871.81 real
3.0 2.220 3871.57 | virtual
3.0 2.081 3871.57 real
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Dynamic pole trajectory.
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Figure: Dynamic pole trajectory. Virtual (green), real (red).
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Figure: Trajectory of the H.O eigenvalue 3979 MeV (n=1) for increasing g.
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Figure: Radial wave-functions for E = 3871.57 MeV and g = 1.177
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Figure: Radial wave-functions for E = 3871.57 MeV and g = 2.081
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V. Conclusions

Although this work is still in progress, we can already conclude:

& The model properly describes the behavior of an S-wave decay channel bellow
the threshold.

© The two-component wave function is stable to a range of more than 10 MeV
bellow threshold.

© The pole above threshold goes to the n =1 H.O. eigenvalue, as it should, in
the case of the decoupling.

& The 3872 MeV pole is dynamically generated in the context of this very
simplified model.

= In order to know whether the mysterious X(3872) is a molecule, we still
need to numerically integrate the wave-function components, to study their
probabilities!
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