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I. The mysterious X (3872)

Experimental features:

• The existencence of the X (3872) is very well established.

• It was discovered by the Belle Collaboration, in 2003, in the decay
B± → K±π+π−J/ψ.

• It is a ”charmonium-like state”.

• It has two possible JPC assignments, 1++ or 2−+.

• Mass: m = 3871.57± 0.25 MeV/c2, Γ < 2.3 MeV/c2. (PDG(2010))

• Hadronic decay modes: ρ0J/ψ, ωJ/ψ and D0D∗0.



Theoretical enigma:

� The X (3872) does not fit in the conventional models for qq̄ mesons.

� It lies very close to the D0D∗0 threshold.

� It has an isospin violating and two OZI-supressed hadronic decays.

� Angular momentum and parity are very hard to determine
experimentally.

� This enhancement is an actual challenge to the theorists, who try to
predict and describe it through a panoplly of approaches, namelly,
molecules.



Our Motivation:

In a previous study of the X (3872) (Eur. Phys. J. C (2011) 71:1762), we
employed the Resonance Spectrum Expansion formalism, with nine
coupled-channels, including the ρ0J/ψ and the ωJ/psi . We got very optimistic
results:
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• In the view of this results, which are encouraged to believe that no molecular
(or other exotic) description is needed, so fast, to describe this state.

• Also, we are motivated by the work of Eric Braaten and Meng Lu (PRD 76,
094028 (2007)) which considering the X (3872) as a D0 − D∗0 molecule, with
1++, conclude it fits to a bound state below the D0D∗0.

• However, the analysis of the wave function probabilities should give us a
description of the dominant modes. This, in principle, is realized by a
two-channel Schrödinger potential model.

• Then, the goal of this work, still in progress, is to study the probabilities of
the two-component wave-function within a cc̄ − D0D∗0. If the probablibily of
the cc̄ component does not vanish near the threshold, then the X (3872) is not
a molecule.



II.A simple two-channels model for hadronic resonances

Let us consider a qq̄ −MM system. q-quark, M-meson.
The qq̄ state is confined through an harmonic-oscilator (H.O.) potential. The
MM final state is composed of two free mesons.

Then, we write the radial Schrödinger equation:„
hc V
V hf

«„
uc

uf

«
= E

„
uc

uf

«
With the following hamiltonians:
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At some ’string breaking’ distance a, one can have a point transition from one
state to the other. Then, this two-channels are coulpled, with strengh g ,
through a potential of the type:

V =
g

2µca
δ(r − a)

The boundary conditions of this problem are:

u′c(r ↑ a)− u′c(r ↓ a) +
λ

a
uf (a) = 0

u′f (r ↑ a)− u′f (r ↓ a) +
λµf

aµc
uc(a) = 0

uc(r ↑ a) = uc(r ↓ a)

uf (r ↑ a) = uf (r ↓ a)



A general solution for this problem is given by:

uc(r) =

8<:
AcFc(r) r < a

BcGc(r) r > a

Where Fc(r) is a function which vanishes at the origin and Gc(r) is a function

which dumps exponentially at infinity. If z = µωr 2 and ν = E−2mc
2ω
− lc +3/2

2
,

they are defined by:

F (r) =
1

Γ(l + 3/2)
z (l+1)/2e−z/2φ(−ν, l + 3/2, z)

G(r) = −1

2
Γ(−ν)rz l/2e−z/2ψ(−ν, l + 3/2, z)



Now the MM, or final state solution:

uf (r) =

8><>:
Af Jlf (kr) r < a

Bf

h
Jlf (kr)k2lf +1 cot

`
δlf (E)

´
− Nlf (kr)

i
r > a

With,

Jl(kr) = k−l rjl(kr)

Nl(kr) = k l+1rnl(kr)



From the boundary conditions, we get the relations:

8<:
G ′c(r)Fc(a)− F ′c(a)Gc(a) = g

a
Jlf (ka)Fc(a) Af

Bc

J ′lf (ka)Nlf (ka)− Jlf (ka)N ′lf (ka) = g
a
µf
µc

Jlf (ka)Fc(a) Ac
Bf

And also, one can verify that the Wronskian gives:8<:
W (Fc(a),Gc(a)) = limr→a[Fc(r)G ′c(r)− F ′c(r)Gc(r)] = 1

W (Nlf (ka), Jlf (ka)) = limr→a[Nlf (kr)J ′lf (kr)− N ′lf (kr)Jlf (kr)] = −1

It follows that the partial amplitudes of the wave function relate as:

Af Bf = −µf

µc
AcBc
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Bf
= −

»
g 2

a2

µf

µc
J2

lf (ka)F 2
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Then, the cotangent comes:

cot
`
δlf (E)

´
= −

»
g 2 µf

µc
kj2

lf (ka)Fc(a)Gc(a)

–−1

+
nlf (ka)

jlf (ka)

Which relates to the scattering matrix through Slf (E) = e2iδlf
(E). It comes,

finally, an expression for S :

Slf (E) =
1− ig 2 µf

µc
kh

(2)
lf

(ka)jlf (ka)Fc(a)Gc(a)

1 + ig 2 µf
µc

kh
(1)
lf

(ka)jlf (ka)Fc(a)Gc(a)

The poles of the S-matrix are interpreted as resonances or bound states.



Setting the amplitudes: 8>>><>>>:
Ac = 1

Bc = Fc (a)
Gc (a)

Af = a
g

1
Jlf

(ka)Gc (a)

Bf = − g
a
µf
µc

Jlf (ka)Fc(a)

The radial wave functions R(r), where u(r) = rR(r), are fully determined.

Rc(r) =

8><>:
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r
, r < a
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III. The cc̄ − D0D∗0 system

Now we apply this formalism to the case of the coupled cc̄ − D0D∗0. In the
confined channel we have cc̄, with lc = 1 while in the final two-meson channel
we have D0D∗0, where lf = 0. To this system, we compute:

µc =
1

2
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µf =
E

4

»
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„
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«2–
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2

»
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The S-matrix poles are given by:

0 = 1 + ig 2 µf

µc
kh

(1)
lf

(ka)jlf (ka)Fc(a)Gc(a)

ν =
E − 2mc

2ω
− lc + 3/2

2

The coupling g and ’string-breaking’ distance a are left as free parameters. In
the following table we summarize the employed parameter values:

Parameter ω mc mD0 mD∗0 mD0 + mD∗0

Value (MeV) 190 1562 1864.84 2006.97 3871.81

For integer values of ν, the poles of the S-matrix shall be eigenvalues of the
H.O., for which case the two channels decouple.

ν 0 1 2

E(MeV) 3599 3979 4359

Table: Eigenvalues of the H.O.



IV. Preliminary results

’String Breaking’ a Coupling g Solution Type

2.0 1.150 3871.81 virtual
2.0 1.153 3871.81 real
2.0 1.127 3871.56 virtual
2.0 1.177 3871.57 real

2.5 1.372 3871.81 virtual
2.5 1.377 3871.81 real

3.0 2.144 3871.81 virtual
3.0 2.150 3871.81 real
3.0 2.220 3871.57 virtual
3.0 2.081 3871.57 real



Figure: Dynamic pole trajectory. Virtual (green), real (red).
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Figure: Dynamic pole trajectory. Virtual (green), real (red).
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Figure: Trajectory of the H.O eigenvalue 3979 MeV (n=1) for increasing g .
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Figure: Radial wave-functions for E = 3871.57 MeV and g = 1.177
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Figure: Radial wave-functions for E = 3871.57 MeV and g = 2.081
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V. Conclusions

Although this work is still in progress, we can already conclude:

� The model properly describes the behavior of an S-wave decay channel bellow
the threshold.

� The two-component wave function is stable to a range of more than 10 MeV
bellow threshold.

� The pole above threshold goes to the n = 1 H.O. eigenvalue, as it should, in
the case of the decoupling.

� The 3872 MeV pole is dynamically generated in the context of this very
simplified model.

⇒ In order to know whether the mysterious X (3872) is a molecule, we still
need to numerically integrate the wave-function components, to study their
probabilities!

***


