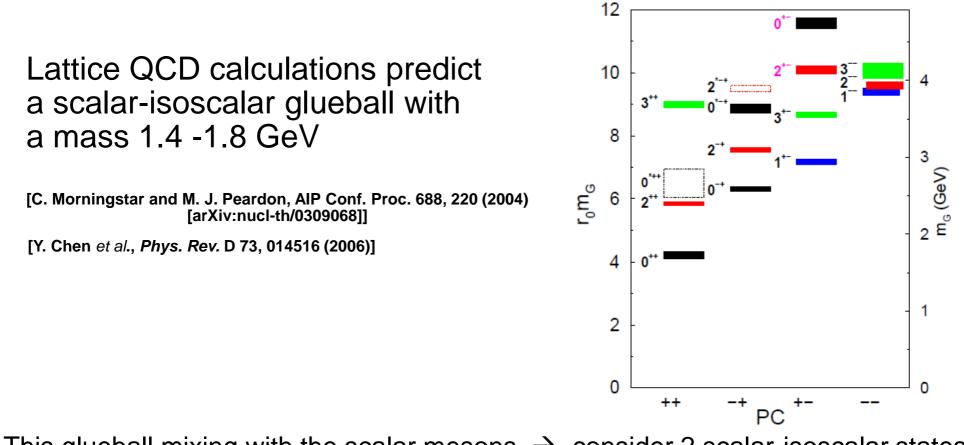
## Phenomenology of Dilaton in a Chiral Linear Sigma Model with Vector Mesons


### Stanislaus Janowski

# in collaboration with D. Parganlija, F. Giacosa, D. H. Rischke





### **Motivation**

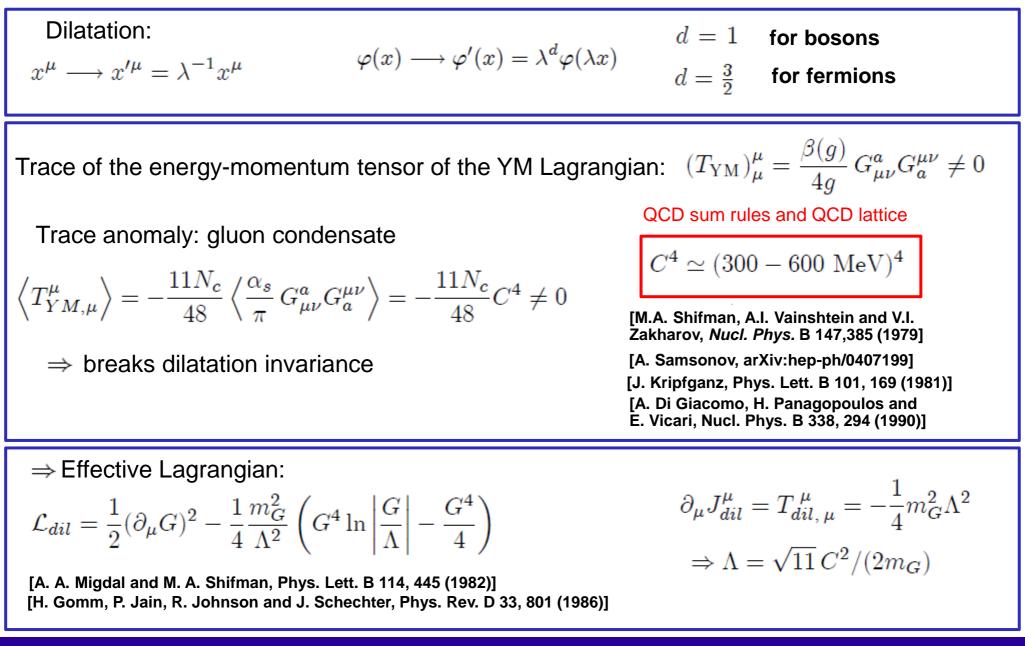


This glueball mixing with the scalar mesons  $\rightarrow$  consider 2 scalar-isoscalar states:

1 glueball  $G \equiv gg$  and 1 quarkonium  $\bar{q}q \equiv (\bar{u}u + dd)/\sqrt{2}$   $J^{PC} = 0^{++}$ 

### Motivation

Consider 2 scenarios:


$$G\cong f_0(1500)$$
 and  $ar qq\cong f_0(1370)$ 

$$G\cong f_0(1710)$$
 and  $ar q q\cong f_0(1370)$ 

But also tested:

$$G\cong f_0(1500)$$
 and  $ar qq\cong f_0(600)$ 

$$G \cong f_0(1710)$$
 and  $\bar{q}q \cong f_0(600)$ 



#### Stanislaus Janowski

Full effective Lagrangian:

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{dil} + \text{Tr} \left[ (D^{\mu} \Phi)^{\dagger} (D_{\mu} \Phi) - m_0^2 \left( \frac{G}{G_0} \right)^2 \Phi^{\dagger} \Phi - \lambda_2 (\Phi^{\dagger} \Phi)^2 \right] \\ &- \lambda_1 (\text{Tr} \left[ \Phi^{\dagger} \Phi \right])^2 + c [\det(\Phi^{\dagger}) + \det(\Phi)] + \text{Tr} \left[ H \left( \Phi^{\dagger} + \Phi \right) \right] \\ &- \frac{1}{4} \text{Tr} \left[ (L^{\mu\nu})^2 + (R^{\mu\nu})^2 \right] + \frac{m_1^2}{2} \left( \frac{G}{G_0} \right)^2 \text{Tr} \left[ (L^{\mu})^2 + (R^{\mu})^2 \right] \\ &+ \frac{h_1}{2} \text{Tr} [\Phi^{\dagger} \Phi] \text{Tr} [L_{\mu} L^{\mu} + R_{\mu} R^{\mu}] + h_2 \text{Tr} [\Phi^{\dagger} L_{\mu} L^{\mu} \Phi + \Phi R_{\mu} R^{\mu} \Phi^{\dagger}] \\ &+ 2h_3 \text{Tr} [\Phi R_{\mu} \Phi^{\dagger} L^{\mu}] \end{aligned}$$

Symmetries:

$$U(N_f)_L \times U(N_f)_R$$
  

$$\Phi \longrightarrow \Phi' = U_L \Phi U_R^{\dagger}$$
  

$$L^{\mu} \longrightarrow L^{\mu'} = U_L L^{\mu} U_L^{\dagger}$$
  

$$R^{\mu} \longrightarrow R^{\mu'} = U_R R^{\mu} U_R^{\dagger}$$
  

$$x^{\mu} \longrightarrow x'^{\mu} = \lambda^{-1} x^{\mu}$$

[D. Parganlija, F. Giacosa and D. Rischke, Phys. Rev. D 82, 054024 (2010)] [S. Janowski, D. Parganlija, F. Giacosa and D. Rischke, Phys. Rev. D 84, 054007 (2011)]

 $\begin{array}{ll} \mbox{Scalars and pseudoscalars:} & \mbox{Vectors and axial-vectors:} \\ \Phi = \left(\sigma + i\eta_N\right)t^0 + \left(\vec{a}_0 + i\vec{\pi}\right)\cdot\vec{t} & \mbox{} L^\mu = \left(\omega^\mu + f_1^\mu\right)t^0 + \left(\vec{\rho}^\mu + \vec{a}_1^\mu\right)\cdot\vec{t} & \mbox{} N_f = 2 \\ R^\mu = \left(\omega^\mu - f_1^\mu\right)t^0 + \left(\vec{\rho}^\mu - \vec{a}_1^\mu\right)\cdot\vec{t} & \mbox{} \end{array}$ 

Covariant derivative:  $D^{\mu}\Phi = \partial^{\mu}\Phi - ig_1(L^{\mu}\Phi - \Phi R^{\mu})$ 

Shifting  $\frac{\sigma \to \phi + \sigma}{G \to G_0 + G}$  and expanding the potential around the minimum to 2nd order:  $V(\sigma, G) = V(\phi, G_0) + \frac{1}{2}M_{\sigma}^2\sigma^2 + \frac{1}{2}M_G^2G^2 + 2m_0^2\frac{\phi}{G_0}\sigma G$ 

mixing parameter

The physical fields  $\sigma'$  and G' :

$$\begin{pmatrix} \sigma' \\ G' \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \sigma \\ G \end{pmatrix} \equiv \begin{pmatrix} f_0(600) \text{ or } f_0(1370) \\ f_0(1500) \text{ or } f_0(1710) \end{pmatrix}$$

Mixing angle: 
$$\theta = \frac{1}{2} \arctan \left[ -4 \frac{\phi}{G_0} \frac{m_0^2}{M_G^2 - M_\sigma^2} \right]$$

$$M_{\sigma'}^2 = M_{\sigma}^2 \cos^2 \theta + M_G^2 \sin^2 \theta + 2 m_0^2 \frac{\phi}{G_0} \sin(2\theta)$$
$$M_{G'}^2 = M_G^2 \cos^2 \theta + M_{\sigma}^2 \sin^2 \theta - 2 m_0^2 \frac{\phi}{G_0} \sin(2\theta)$$

#### Stanislaus Janowski

Determination of the 10 free parameters of the effective model:

|                   |                   |            |    | $\sim$                |                                           |
|-------------------|-------------------|------------|----|-----------------------|-------------------------------------------|
| $m_0, \lambda_1,$ | $\lambda_2, m_1,$ | $g_1, c_2$ | h, | $h = h_1 + h_2 + h_3$ | $m_G, \ \Lambda = \sqrt{11} C^2 / (2m_G)$ |

We use:

| [K. Nakamura et al. (Particle Data Group),<br>J. Phys. G 37, 075021 (2010)]         |
|-------------------------------------------------------------------------------------|
| [F. Giacosa, arXiv:0712.0186 [hep-ph]]                                              |
| [M. Urban, M. Buballa and J. Wambach,<br>Nucl. Phys. A 697, 338 (2002)]             |
| [D. Parganlija, F. Giacosa and D. Rischke,<br>Phys. Rev. D 82, 054024 (2010)]       |
| [PDG, <i>Review of Particle Physics</i> ,<br>Eur. Phys. J. C 3 (1998), C 15 (2000)] |
|                                                                                     |

Fitting to experimental data yields the values of the remaining free parameters:

 $M_{\sigma}, m_G, m_1, C$ 

Mass of the rho meson:

$$m_{\rho}^2 = m_1^2 + \phi^2 \left( h_1 + h_2 + h_3 \right) / 2$$

Stanislaus Janowski

### Results

Favoured scenario:  $\{\sigma', G'\} = \{f_0(1370), f_0(1500)\}$ 

Using the experimental data we obtain with the  $\chi^2$  method following parameters:

| Quantity           | Fit [MeV]     | Experiment [MeV] |
|--------------------|---------------|------------------|
| $M_{\sigma'}$      | $1191\pm26$   | 1200-1500        |
| $M_{G'}$           | $1505\pm 6$   | $1505\pm 6$      |
| $G' 	o \pi \pi$    | $38\pm5$      | $38.04 \pm 4.95$ |
| $G' \to \eta \eta$ | $5.3 \pm 1.3$ | $5.56 \pm 1.34$  |
| $G' \to K\bar{K}$  | $9.3 \pm 1.7$ | $9.37 \pm 1.69$  |

| Parameter    | Fit $[MeV]$   |
|--------------|---------------|
| C            | $699 \pm 40$  |
| $M_{\sigma}$ | $1275\pm30$   |
| $m_G$        | $1369 \pm 26$ |
| $m_1$        | $809 \pm 18$  |

$$\chi^2/{\rm d.o.f.} = 0.29$$

⇒ consistent with lattice QCD

The quarkonium-glueball mixing angle:  $\theta = (29.7 \pm 3.6)^{\circ} \Rightarrow f_0(1500) [f_0(1370)]$  consists to 76% of glueball [quarkonium] and to 24% of quarkonium [glueball]

| Consequences and predictions:    |                 |                  |  |
|----------------------------------|-----------------|------------------|--|
| Decay Width                      | Our Value [MeV] | Experiment [MeV] |  |
| $G' \to \rho \rho \to 4\pi$      | 30              | $54.0\pm7.1$     |  |
| $G'  ightarrow \eta \eta'$       | 0.6             | $2.1 \pm 1.0$    |  |
| $\sigma' 	o \pi\pi$              | $284\pm43$      | -                |  |
| $\sigma'  ightarrow \eta \eta$   | $72\pm 6$       | -                |  |
| $\sigma' \to K\bar{K}$           | $4.6 \pm 2.1$   | -                |  |
| $\sigma' \to \rho \rho \to 4\pi$ | 0.09            | -                |  |

Total decay width:

Experiment:  $\Gamma_{f_0(1370)} = (200 - 500) MeV$ 

Our value:  $\Gamma_{\sigma'} \simeq 360 \ MeV$ 

#### Stanislaus Janowski

### Results

Not favoured scenario:  $\{\sigma', G'\} = \{f_0(1370), f_0(1710)\}$ 

Using the experimental data we obtain with the  $\chi^2$  method following parameters:

| Quantity            | Fit [MeV]      | Experiment [MeV] |
|---------------------|----------------|------------------|
| $M_{\sigma'}$       | $1386 \pm 134$ | $1350\pm150$     |
| $M_{G'}$            | $1720\pm6$     | $1720\pm 6$      |
| $G' \to \pi \pi$    | $29.7\pm6.5$   | $29.3\pm6.5$     |
| $G' \to \eta \eta$  | $6.9 \pm 5.8$  | $34.3 \pm 17.6$  |
| $G' \to K\bar{K}$   | $16 \pm 14$    | $71.4 \pm 29.1$  |
| $\sigma' 	o \pi\pi$ | $379 \pm 147$  | $250\pm150$      |

| _            | $764 \pm 256$       |
|--------------|---------------------|
| M            | 4 2 4 4 4 4 4 4 4 4 |
| $W_{\sigma}$ | $1516 \pm 80$       |
| $m_G$ 1      | $1531 \pm 233$      |
| $m_1$        | $827 \pm 36$        |

$$\chi^2/{\rm d.o.f.}~=1.72$$

The quarkonium-glueball mixing angle:

 $\theta = (37.2 \pm 21.4)^{\circ} \Rightarrow$  unexpectedly large, reverse ordering is possible!

Large decay width, but experimentally not seen !

| Decay Width                | Our Value [MeV]      | Experiment |
|----------------------------|----------------------|------------|
| $G' \to 4\pi$              | 115                  | -          |
| $G'  ightarrow \eta \eta'$ | 16                   | -          |
| $\sigma' 	o \eta\eta$      | $153\pm79$           | -          |
| $\sigma' \to K\bar{K}$     | $2.1^{+13.6}_{-2.1}$ | -          |

#### Stanislaus Janowski

### Results

This scenarios also have been tested:

$$\{\sigma',G'\}=\{f_0(600),\ f_0(1500)\}$$

$$\{\sigma', G'\} = \{f_0(600), f_0(1710)\}$$

But in both scenarios the decay width is too small !

$$\Gamma_{\sigma' \to \pi\pi}$$

### **Conclusions and Outlook**

- Global chiral invariant two-flavour linear sigma model with (axial-)vector mesons and dilaton d.o.f was presented
- The favoured scenario is, where the resonance  $f_0(1500)$  is predominantly a glueball state and  $f_0(1370)$  is predominantly a quark-antiquark state
- Other scenarios are not favoured
- The gluon condensate was determined and its value is in agreement with the lattice results
- Rho mass is mostly generated by dilaton

- Extension of the model by full inclusion of strangeness and inclusion of a nonet of tetraquark states as additional low-lying scalar states
- Investigation at nonzero temperature and density