Thermodynamics of the nonlinear $\mathrm{O}(\mathrm{N})$ model in $1+1$ dimensions

Elina Seel

H-QM

Francesco Giacosa, Stefano Lottini and Dominik Smith

eQCD 2012, Peniche, May 8. 2012

Model

- many common features with four-dimensional non-Abelian gauge theories
- toy model for QCD
- dimensionless coupling constant, theory is renormalizable
- asymptotical freedom
- dynamically (nonperturbatively) generated mass gap
- conformal invariance
- nonvanishing trace anomaly
- instanton solutions for $N=3$

Model

- generating functional :

$$
\begin{aligned}
Z_{N L} & =N \int \mathcal{D} \Phi \delta\left(\Phi^{2}-N / g^{2}\right) \exp \left[\int_{0}^{\beta} d \tau \int_{-\infty}^{\infty} d x \mathcal{L}_{0}\right] \\
\mathcal{L}_{0} & =\frac{1}{2} \partial_{\mu} \Phi^{t} \partial^{\mu} \Phi
\end{aligned}
$$

where $\Phi^{t}=\left(\sigma, \pi_{1}, \ldots, \pi_{N-1}\right)$ and g is the coupling constant

- nonlinear constraint : $\Phi^{2}=N / g^{2}$
the thermodynamics is constraint on an $N-1$ dimensional sphere

Model

- using

$$
\delta\left(\Phi^{2}-N / g^{2}\right)=\lim _{\varepsilon \rightarrow 0^{+}} N \int \mathcal{D} \alpha e\left\{\begin{array}{l}
\\
-\int_{0}^{\beta} d \tau \int_{-\infty}^{\infty} d x\left[\frac{i}{2} \alpha\left(\Phi^{2}-N / g^{2}\right)+\frac{\varepsilon}{2} \alpha^{2}\right]
\end{array}\right.
$$

one can write

$$
\begin{gathered}
Z_{N L}=\lim _{\varepsilon \rightarrow 0^{+}} N \int \mathcal{D} \alpha \mathcal{D} \Phi \exp \left[-\int_{0}^{\beta} d \tau \int_{-\infty}^{\infty} d x \mathcal{L}\right], \\
\mathcal{L}=\frac{1}{2} \partial_{\mu} \Phi^{t} \partial^{\mu} \Phi-U(\Phi, \alpha), \quad U(\Phi, \alpha)=\frac{i}{2} \alpha\left(\Phi^{2}-N / g^{2}\right)+\frac{\varepsilon}{2} \alpha^{2}
\end{gathered}
$$

where α is an auxiliary field

CJT effective potential

$$
\begin{aligned}
V_{\text {eff }}= & U\left(\phi, \alpha_{0}\right)+ \\
& \frac{1}{2} \sum_{i=\sigma, \vec{\pi}, \alpha} \int_{k}\left[\ln G_{i}^{-1}(k)+D_{i}^{-1}\left(k ; \phi, \alpha_{0}\right) G_{i}(k)-1\right]+V_{2}
\end{aligned}
$$

- tree-level potential:

$$
U=\frac{i}{2}\left(\alpha_{0}+\alpha\right)\left(\sigma^{2}+\pi_{i}^{2}+2 \sigma \phi+\phi^{2}-N / g^{2}\right)+\frac{N \varepsilon}{8}\left(\alpha_{0}+\alpha\right)^{2}
$$

σ and α attain nonvanishing expectation values:

$$
\sigma \rightarrow \phi+\sigma \quad \alpha \rightarrow \alpha_{0}+\alpha
$$

this produces a bilinear mixing term: $-i \alpha \sigma \phi$,
which is eliminated by a shift of the auxiliary field

$$
\alpha \rightarrow \alpha-4 \frac{i \phi \sigma}{N \varepsilon}
$$

CJT effective potential

- shifted Lagrangian :

$$
\begin{aligned}
\mathcal{L}_{\sigma}= & \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma+\frac{1}{2} \partial_{\mu} \pi_{i} \partial^{\mu} \pi_{i}-\frac{\sigma^{2}}{2}\left(i \alpha_{0}+\phi^{2} / \varepsilon\right) \\
& -\frac{\pi_{i}^{2}}{2}\left(i \alpha_{0}\right)-\frac{\alpha^{2}}{2} \varepsilon-\frac{i}{2} \alpha\left(\sigma^{2}+\pi_{i}^{2}\right)-\frac{\phi \sigma}{2 \varepsilon}\left(\sigma^{2}+\pi_{i}^{2}\right) \\
& -\frac{i}{2} \alpha_{0}\left(\phi^{2}-N / g^{2}\right)-\frac{\varepsilon}{2} \alpha_{0}^{2}
\end{aligned}
$$

- inverse tree-level propagators and the tree-level masses :

$$
\begin{aligned}
D_{i}^{-1}\left(k ; \phi, \alpha_{0}\right) & =-k^{2}+m_{i}^{2} ; \quad i=\sigma, \vec{\pi} \\
m_{\sigma}^{2} & =i \alpha_{0}+\frac{\phi^{2}}{\varepsilon}, \quad m_{\pi}^{2}=i \alpha_{0} \\
D_{\alpha}^{-1}\left(k ; \phi, \alpha_{0}\right) & =m_{\alpha}^{2}=\varepsilon
\end{aligned}
$$

One-loop CJT effective potential

- the 2 PI contribution vanishes: $V_{2}=0$

$$
\begin{aligned}
& V_{e f f}\left(\phi, \alpha_{0}, G_{\sigma}, G_{\pi}, G_{\alpha}\right)=\frac{i}{2} \alpha_{0}\left(\phi^{2}-N / g^{2}\right)+\frac{\varepsilon}{2} \alpha_{0}^{2} \\
& +\frac{1}{2} \sum_{i=\sigma, \vec{\pi}, \alpha} \int_{k}\left[\ln G_{i}^{-1}(k)+D_{i}^{-1}\left(k ; \phi, \alpha_{0}\right) G_{i}(k)-1\right]
\end{aligned}
$$

- stationary conditions :

$$
\frac{\delta V_{e f f}}{\delta \phi}=0, \quad \frac{\delta V_{e f f}}{\delta \alpha_{0}}=0, \frac{\delta V_{e f f}}{\delta G_{i}(k)}=0 ; \quad i=\sigma, \vec{\pi}, \alpha
$$

One-loop approximation

- equations for the two condensates :

$$
\begin{aligned}
h & =i \alpha_{0} \phi+\frac{4 \phi}{N \varepsilon} \int_{k} G_{\sigma}(k), \\
i \alpha_{0} & =\frac{2}{N \varepsilon}\left(\phi^{2}-\frac{N}{g^{2}}+\int_{k} G_{\sigma}(k)+(N-1) \int_{k} G_{\pi}(k)\right)
\end{aligned}
$$

- equations for the full propagators :

$$
\begin{aligned}
G_{i}^{-1} & =-k^{2}+M_{i}^{2} ; \quad i=\sigma, \vec{\pi} \\
M_{\sigma}^{2} & =i \alpha_{0}+\frac{\phi^{2}}{\varepsilon}, \quad M_{\pi}^{2}=i \alpha_{0} \\
G_{\alpha}^{-1} & =\varepsilon
\end{aligned}
$$

One-loop approximation

- eliminating the auxiliary field, in the limit $\varepsilon \rightarrow 0$ the equations read

$$
\begin{aligned}
0 & =\phi M_{\pi}^{2} \\
M_{\sigma}^{2} & =M_{\pi}^{2}+\frac{4 \phi^{2}}{N \varepsilon}, \\
\phi^{2} & \left.=\frac{N}{g^{2}}-(N-1) \int_{k} G_{\pi}(k)\right]
\end{aligned}
$$

- in two dimensions there is only one meaningful solution :

$$
\begin{aligned}
\phi & =0, \\
M_{\sigma}^{2} & =M_{\pi}^{2}=M^{2}, \\
\frac{N}{g^{2}} & =N \int_{k} G(k)
\end{aligned}
$$

- Mermin-Wagner-Coleman Theorem:
no spontaneous breakding of a continuous symmetry in $1+1 d$

One-loop approximation

- thermodynamical pressure : $P=-V_{e f f}^{m i n}$
- energy density :

$$
\rho=T \frac{d P}{d T}-P
$$

- trace anomaly :

$$
\theta=\rho-P
$$

Renormalization

- renormalized coupling constant

$$
\begin{aligned}
\frac{1}{g_{r e n}^{2}} & =\left.\frac{2}{N} \frac{d P_{r e g}^{T=0}}{d m^{2}}\right|_{m^{2}=\mu^{2}} \\
& =\frac{1}{g^{2}}-\frac{1}{4 \pi} \ln \frac{\Lambda^{2}}{\mu^{2}}=\frac{1}{g^{2}}\left[1-\frac{g^{2}}{4 \pi} \ln \frac{\Lambda^{2}}{\mu^{2}}\right]
\end{aligned}
$$

- renormalized gap equation

$$
\frac{1}{g_{r e n}^{2}}=\int_{0}^{\infty} \frac{d k}{\pi} \frac{1}{\omega_{k}} \frac{1}{\exp \left\{\omega_{k} / T\right\}-1}+\frac{1}{4 \pi} \ln \frac{\mu^{2}}{M^{2}}
$$

- renormalized pressure

$$
\begin{aligned}
P^{\text {ren }} & =N \frac{M^{2}}{2 g_{\text {ren }}^{2}}+N \int_{0}^{\Lambda} \frac{d k}{\pi} \frac{k^{2}}{\omega_{k}} \frac{1}{\exp \left\{\omega_{k} / T\right\}-1} \\
& -N \frac{M^{2}}{8 \pi}\left(1+\ln \frac{\mu^{2}}{M^{2}}\right)+N \frac{m^{2}}{8 \pi}
\end{aligned}
$$

Renormalization

- asymptotic freedom :

$$
\begin{aligned}
\mu \frac{d g_{r e n}^{2}}{d \mu} & =\mu \frac{d}{d \mu}\left[g^{2}\left(1-\frac{g^{2}}{4 \pi} \ln \frac{\Lambda^{2}}{\mu^{2}}\right)^{-1}\right] \\
& =-\mu g^{2}\left[1-\frac{g^{2}}{4 \pi} \ln \frac{\Lambda^{2}}{\mu^{2}}\right]^{-2}\left(-\frac{g^{2}}{4 \pi}\right)\left(-\frac{2}{\mu}\right) \\
& =-\frac{1}{2 \pi}\left[g^{2}\left(1-\frac{g^{2}}{4 \pi} \ln \frac{\Lambda^{2}}{\mu^{2}}\right)^{-1}\right]^{2} \\
& =-\frac{g_{r e n}^{4}}{2 \pi}<0
\end{aligned}
$$

Two-loop approximation

$$
\begin{aligned}
\mathcal{L}_{\sigma}= & \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma+\frac{1}{2} \partial_{\mu} \pi_{i} \partial^{\mu} \pi_{i}-\frac{\sigma^{2}}{2}\left(i \alpha_{0}+\phi^{2} / \varepsilon\right) \\
& -\frac{\pi_{i}^{2}}{2}\left(i \alpha_{0}\right)-\frac{\alpha^{2}}{2} \varepsilon-\frac{i}{2} \alpha\left(\sigma^{2}+\pi_{i}^{2}\right)-\frac{\phi \sigma}{2 \varepsilon}\left(\sigma^{2}+\pi_{i}^{2}\right) \\
& -\frac{i}{2} \alpha_{0}\left(\phi^{2}-N / g^{2}\right)-\frac{\varepsilon}{2} \alpha_{0}^{2}
\end{aligned}
$$

- using that in $1+1 d \phi=0$ only $\frac{i}{2} \alpha\left(\sigma^{2}+\pi_{i}^{2}\right)$ contributes to V_{2} :

$$
V_{2}=\frac{N}{4} \int_{k} \int_{p} G(k) G_{\alpha}(p) G(k+p)
$$

- effective potential to two-loop order :

$$
\begin{aligned}
V_{e f f}\left(\alpha_{0}, G, G_{\alpha}\right)= & -\frac{i}{2} \alpha_{0} N / g^{2}+\frac{\varepsilon}{2} \alpha_{0}^{2} \\
& +\frac{1}{2} \sum_{i} \int_{k}\left[\ln G_{i}^{-1}(k)+D_{i}^{-1}\left(k ; \alpha_{0}\right) G_{i}(k)-1\right]+V_{2}
\end{aligned}
$$

Two-loop approximation

- equation for the condensate :

$$
i \alpha_{0}=\frac{1}{2 \varepsilon}\left(-\frac{1}{g^{2}}+\int_{k} G(k)\right)
$$

- equations for the full propagtors :

$$
\begin{aligned}
& G^{-1}(k)=D^{-1}(k)+\Sigma(k), \\
& G_{\alpha}^{-1}(k)=D_{\alpha}^{-1}(k)+\Sigma_{\alpha}(k)
\end{aligned}
$$

- self energies :

$$
\begin{aligned}
\Sigma(k) & =\frac{2}{N} \frac{\delta V_{2}}{\delta G(k)}=\int_{p} G_{\alpha}(p) G(p+k), \\
\Sigma_{\alpha}(k) & =2 \frac{\delta V_{2}}{\delta G_{\alpha}(k)}=\frac{N}{2} \int_{p} G(p) G(p+k)
\end{aligned}
$$

Lattice

- discretised action : $S=\beta \sum_{\langle i, j\rangle}\left(1-\vec{s}_{i} \cdot \vec{s}_{j}\right)$
where $\beta=N / g^{2}$
- finite temperature: $\frac{1}{T}=a(\beta) N_{t}$
- scale setting: spin-spin correlation at $T=0\langle\vec{s}(0) \cdot \vec{s}(t)\rangle \sim e^{-a m t}$
- each $\beta \rightarrow$ a discretisation
- each $N_{t} \rightarrow$ a temperature
- continuum expression: $\quad p_{*}(T)=T \frac{\partial \ln \mathcal{Z}}{\partial V}, \mathcal{Z}=\int_{S^{2}}\left\{d \vec{s}_{i}\right\} e^{\beta \sum_{\langle i, j\rangle} \vec{s}_{i} \cdot \vec{s}_{j}}$
- integral method:

$$
\frac{p(T)}{T^{2}}=N_{t}^{2} \int_{0}^{\beta}\left(\left\langle\ell_{x}+\ell_{t}\right\rangle_{\beta^{\prime}, N_{t}}-2\langle\ell\rangle_{\beta^{\prime}, \infty}\right) d \beta^{\prime}
$$

- where $\ell_{e}=\vec{s}_{i} \cdot \vec{s}_{i+\hat{e}}$

Results

- similar T-dependence to the gluon mass in the deconfined phase
- dimensional transmutation :
mass gap at $T=0$
$m^{2}=\mu^{2} \exp \left(-\frac{4 \pi}{g_{\text {ren }}^{2}}\right)$
- at large $T: \quad M \sim \frac{T}{\log T}$

Results

- at high T : SB limit of $N-1$ non-interacting bosons:

$$
P_{S B} / N=(N-1) \pi T^{2} / 6 N
$$

Results

- similar structure to the QCD trace anomaly

Summary

- study of the thermodynamics of the nonlinear $O(N)$ model in $1+1 d$
- CJT formalism to one- and two-loop order
- fully nonperturbative lattice calculations at finite T
- high T limit better described by two-loop order
- better correspondence between the CJT formalism and the lattice simulations at low T
- improvements : try other theoretical approaches, higher order terms

Thank you for your attention

