

Recent results on the IR sector of QCD Daniele Binosi

binosi@ectstar.eu

Joannis Papavassiliou
 University of Valencia and CSIC

Arlene C. Aguilar
 Federal University of ABC

David Ibañez
University of Valencia
Marco Cristoforetti
ECT*

Andrea Quadri
University of Milan

ECT* - Fondazione Bruno Kessler
Strada delle Tabarelle 286
I-38I23 Villazzano, Trento (Italy)

PT-BFM: a primer

(problems with) conventional formalism

Schwinger-Dyson eqs: way of treating purely non-perturbative phenomena (e.g., mass gap generation)

Gluon propagator

BRST demands $q^{\alpha} \sum_{i=1}^{5}\left(a_{i}\right)_{\alpha \beta}=0$very difficult diagrammatic verification
cannot truncate in any obvious way

Retaining $\left(a_{1}\right)$ and $\left(a_{2}\right)$ only is not correct even at one loopAdding $\left(a_{3}\right)$ is not sufficient for a full analysis; beyond one loop

$$
\left.q^{\alpha} \Pi_{\alpha \beta}(q)\right|_{\left(a_{1}\right)+\left(a_{2}\right)} \neq 0
$$

$\left.q^{\alpha} \Pi_{\alpha \beta}(q)\right|_{\left(a_{1}\right)+\left(a_{2}\right)+\left(a_{3}\right)} \neq 0$

(problems with) conventional formalism

Schwinger-Dyson eqs: way of treating purely non-perturbative phenomena (e.g., mass gap generation)

Infinite system of coupled non-linear integral equations
captures the full quantum

e.o.m.

expansion about the free-field vev, but finally

no reference to it no reference to it
gauge and renormalization group
invariance should be respected

Gluon propagator

BRST demands $q^{\alpha} \sum_{i=1}^{5}\left(a_{i}\right)_{\alpha \beta}=0$
very difficult diagrammatic verification
cannot truncate in any obvious way

There are two approaches

RetaiCheck transversality of the answer at the end of the calculation
Approximate gauge-invariance (might be even lost in intermediate steps)

Resum the equation into a new one with better truncation properties
PT-.FFM scheme
Gauge invariance exactly preserved at each step
O

Results are fully gauge invariance

Apply the pinch technique to the Schwinger-Dyson equation of the gluon propagator

graphs made out of new vertices,
(inside conventional props)
new vertices corresponds to BFM
vertices
external gluons dynamically converted into background gluons

New Schwinger-Dyson equation has a special structure
Subgroups (one-/two-loop dressed gluon/ghost) are individually transverseExpress the Schwinger-Dyson eq in terms of a background-

Problem

Not a genuine Schwinger-Dyson equation (mixes pinch technique and conventional propagators)

$$
\begin{aligned}
& \text { quantum identity } \\
& \begin{array}{l}
\Delta^{-1}\left(q^{2}\right)\left[1+G\left(q^{2}\right)\right]^{2} P_{\mu \nu}(q)=q^{2} P_{\mu \nu}(q) \sum_{i=0}^{10}\left(a_{i}\right)_{\mu \nu} \\
\widehat{\Delta}\left(q^{2}\right)=\left[1+G\left(q^{2}\right)\right]^{-2} \Delta\left(q^{2}\right)
\end{array}
\end{aligned}
$$

In $4 d$ the function G is directly related to the inverse of the ghost dressing function

$$
F^{-1}\left(q^{2}\right) \approx 1+G\left(q^{2}\right)
$$

BQQ vertex and

J. S. Schwinger, Phys. Rev. 125, 397 (1962)

Dyson resum

$$
\Delta\left(q^{2}\right)=\frac{1}{q^{2}\left[1+\Pi\left(q^{2}\right)\right]}
$$

Idea

If $\Pi\left(q^{2}\right)$ has a pole at $q^{2}=0$ the vector meson is massive even though it is massless in the absence of interactionsRequires massless, Iongitudinally coupled Goldstone like poles $1 / q^{2}$
Occur dynamically (even in the absence of canonical scalar fields) as composite excitations in a strongly coupled gauge theory

Dynamics enters through the three-gluon vertex

Longitudinally coupled massless poles

Not a kinematic singularity, rather bound states poles non-perturbatively producedDo not appear in the S matrix of the theory ("eaten-up" by the gluons to become massive)Instrumental for ensuring that

. $\Delta^{-1}(0)>0$

DMG generation

How does dynamical gluon mass generation work in practice?Assumes the formation of a longitudinally coupled massless poles that......will modify the vertex of the theory......which will lead to massive type solutions of the corresponding SDE
Two levels

Kinematical

Dynamical

DMG generation

$\widetilde{\Gamma}_{m}$ satisfies the same identities as $\widetilde{\Gamma}$ with the replacement $J \longrightarrow J_{m}$

$$
\begin{aligned}
& \widetilde{c}^{\widetilde{C}_{n}^{\alpha \mu}}(q, r, p)=p^{2} J_{m}\left(p^{2}\right) P^{\mu \nu}(p)-r^{2} J_{m}\left(r^{2}\right) P^{\mu \nu}(r) \\
& q_{\alpha},
\end{aligned}
$$

$\widetilde{\Gamma}^{\prime}$ satisfies the same identities as $\widetilde{\Gamma}$ with the replacement $\Delta \longrightarrow \Delta_{m}$

$$
q^{\alpha} \widetilde{\Gamma}_{\alpha \mu \nu}^{\prime}(q, r, p)=p^{2}\left[J_{m}\left(p^{2}\right) P_{\mu \nu}(p)-m^{2}\left(p^{2}\right)\right]-\left[r^{2} J_{m}\left(r^{2}\right)-m^{2}\left(r^{2}\right)\right] P_{\mu \nu}(r)
$$

The V and \widetilde{V} vertices can be explicitly determined by exploiting the total Iongitudinality condition $P P P V=P P P V=0$ and the STIs/WI they satisfy

Not needed (in the Landau gauge) at the one-loop dressed level but fundamental at the twoloop dressed level

Unquenching the SDEs

Highly non-linear propagation of the effect
The presence of quarks will also affect the original quenched diagrams

Operating assumption: non-linear effects are suppressed wrt diagram (a_{11})

Adding dynamical quarks gives

$$
\Delta_{Q}^{-1}\left(q^{2}\right) P_{\mu \nu}(q)=\frac{q^{2} P_{\mu \nu}(q)+i \widehat{\Pi}_{\mu \nu}^{Q}(q)+i \widehat{X}_{\mu \nu}(q)}{\left[1+G_{Q}\left(q^{2}\right)\right]^{2}}
$$

Suffix Q indicates the effects of quarks on quenched quantities

Non-perturbative calculation of the term

$$
\begin{aligned}
& \widehat{X}^{\mu \nu}(q)=-g^{2} d_{f} \int_{k} \operatorname{Tr}\left[\gamma^{\mu} S(k) \widehat{\Gamma}^{\nu}(k+q,-k,-q) S(k+q)\right] \\
& S^{-1}(k)=-i\left[A\left(k^{2}\right) \not k-B\left(k^{2}\right)\right]=-i A\left(k^{2}\right)\left[\not k-\mathcal{M}\left(k^{2}\right)\right] \begin{array}{l}
A \text { and } B \text { are obtained from solving } \\
\text { the quark gap equation }
\end{array} \\
& q^{\nu} \widehat{\Gamma}_{\nu}(k+q,-k, q)=S^{-1}(k+q)-S^{-1}(-k) \quad \begin{array}{l}
\text { valid for both BC }
\end{array} \\
& \text { and CP vertices }
\end{aligned}
$$

In the $q \rightarrow 0$ limit

$$
\widehat{X}(0)=-\frac{2 g^{2}}{d-1} \int_{k} \frac{1}{A^{2}\left(k^{2}-\mathcal{M}^{2}\right)^{2}}\left\{A\left[(2-d) k^{2}+d \mathcal{M}^{2}\right]+2 A^{\prime} k^{2}\left(k^{2}+\mathcal{M}^{2}\right)-4 k^{2} B^{\prime} \mathcal{M}\right\}
$$

Use the seagull identity

$$
\int_{k} k^{2} \frac{\partial f\left(k^{2}\right)}{\partial k^{2}}+\frac{d}{2} \int_{k} \Delta(k)=0 \quad f\left(k^{2}\right)=\left[A\left(k^{2}\right)\left(k^{2}-\mathcal{M}^{2}\right)\right]^{-1} \widehat{X}(0)=0
$$

The quark loop does not contribute to the gluon mass!
keeps the gluon massless in the absence of a DMG mechanism

So what happens when quarks are present?

$$
\Delta^{-1}\left(q^{2}\right)=q^{2} J\left(q^{2}\right)-m^{2}\left(q^{2}\right) \longrightarrow \Delta_{Q}^{-1}\left(q^{2}\right)=q^{2} J_{Q}\left(q^{2}\right)-m_{Q}^{2}\left(q^{2}\right)
$$

$\widehat{X}\left(q^{2}\right)$ does not affect the value of the mass and therefore contributes to $J_{Q}\left(q^{2}\right)$

$$
q^{2} J_{Q}\left(q^{2}\right)=q^{2} J\left(q^{2}\right)+i \frac{\widehat{X}\left(q^{2}\right)}{1+G\left(q^{2}\right)}
$$

However

First-principle
determination would require the knowledge of the mass equation

Put everything together to write

$$
\Delta_{Q}\left(q^{2}\right) \simeq \frac{\Delta\left(q^{2}\right)}{1+\left\{i \widehat{X}\left(q^{2}\right)\left[1+G\left(q^{2}\right)\right]^{-2}-\lambda^{2}\right\} \Delta\left(q^{2}\right)}
$$

Use for Δ and F, G the quenched lattice data

Minor difference ($\sim 3 \%$) between the $B C$ and $C P$ vertices

Suppression of the "swelling" in the intermediate momenta region

As anticipated one has the same IR fixed point as in the quenched case

Use extrapolation (cubic B-spline method) to account for our inability of determining λ

Unquenching the lattice

No systematic study of the IR sector with dynamical quarks

2007 data from the Adelaide (Bowman et al., Phys. Rev. D76, 094505) group butUse staggared fermions configurations (MILC collaboration)Consider only 2 light and I heavy quarksShow only the gluon dressing function
(no gluon propagator, no ghost)
O You have to digitalize them...

Use ETMC configurations projected to the Landau gauge2 light quarks and $2+1+1$ configurations
Very small current masses for up/down quarks 20-40 MeV; strange 95 MeV , charm 1.51 GeVCompensate for $\mathbf{O (4)}$ breaking artifacts (no cylindrical cut on data but $\mathrm{H}(4)$ extrapolation)Study both the gluon and the ghost IR sector

(preliminary) results

M. Cristoforetti et al., in preparation

(preliminary)

SDEs comparison

All-order mass eq.

PT-BFM one-loop dressed mass equation

Landau gauge mass equation (one-loop dressed)

$\left(a_{1}\right)$

(a_{2})Dynamical equation derived as what survives in the $q \rightarrow 0$ limitSeagull identity can only happen in the $g_{\mu \nu}$ part
Sufficient to look at what survives the limit in the longitudinal terms (keeping in mind that the answer must be transverse)

$$
m^{2}\left(q^{2}\right)=-\frac{3 g^{2} C_{A}}{1+G\left(q^{2}\right)} \frac{1}{q^{2}} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} m^{2}\left(k^{2}\right) \Delta(k) \Delta\left((k+q)^{2}\right)\left[(k+q)^{2}-k^{2}\right]
$$The $q \rightarrow 0$ limit is particularly interesting

m^{2} cannot be a monotonically decreasing function

$$
m^{2}(0)=-\frac{3}{2} g^{2} C_{A} F(0) \int_{k} m^{2}\left(k^{2}\right)\left[k^{2} \Delta^{2}\left(k^{2}\right)\right]^{\prime}
$$

must reverse sign and display a sufficiently deep negative region at intermediate momenta

This mass equation is different from the one that has appeared in PRD 84, 085026Addresses a very subtle issue related to taking the trace and completing the seagull identity (resulting, rather ironically, in a breaking of transversality)The $q \rightarrow 0$ limit of the equation is however the same

PT-BFM one-loop dressed mass equation

Within the standard angular approximation, the old equation yields

$$
m^{2}(x)=m^{2}(0) \frac{F(x)}{F(0)}+\frac{\alpha_{s} C_{A}}{2 \pi} F(x) \bar{R}(x)
$$

$$
\bar{R}(x)=\frac{1}{2} \int_{0}^{x} \mathrm{~d} y y m^{2}(y)\left(1-\frac{y}{x}\right) \Delta^{2}(y)+\Delta(x) \int_{0}^{x} \mathrm{~d} y y\left(y-\frac{x}{4}\right) \frac{m^{2}(x)-m^{2}(y)}{x-y} \Delta(y)
$$

$$
-m^{2}(x) x^{2} \Delta^{2}(x)+\frac{3}{4} \int_{0}^{x} \mathrm{~d} y m^{2}(y)\left[y^{2} \Delta^{2}(y)\right]^{\prime}
$$

(a_{5})

(a_{6})

(a_{8})

We consider the two-loop dressed diagrams

- If ghosts are massless these are the only contributions missing

A new ingredient appears: \widetilde{V}_{4} for the four-gluon vertex.In principle many new ghost Green's functions appears due to the complicate STIs structure satisfied by the conventional four-gluon vertex
(However in the Landau gauge we only need to know the contraction:
$P P P \widetilde{V}_{4}=$ linear combinations of V_{3}
no additional ghost Green's function @ 2 loops

It is therefore mandatory to explicitly determine the pole part of the three-gluon vertices \widetilde{V}_{3} and V_{3}

two-loop contribution to the mass equation

$$
\begin{aligned}
& \frac{3}{2} i \int_{k} \frac{Y\left(k^{2}\right)}{q^{2} k^{2}} \Delta(k) \Delta(k+q)(k \cdot q)\left[m^{2}(k)-m^{2}(k+q)\right] \\
& Y\left(k^{2}\right)=k^{\alpha} \int_{\ell} \Delta(\ell) \Delta(\ell+k) P_{\alpha \rho}(\ell) P_{\beta \sigma}(\ell+k) \mathbb{\Gamma}^{\sigma \rho \beta}(-\ell-k, \ell, k)
\end{aligned}
$$

Add this to the (one-loop) mass equation to get (Euclidean space)

$$
\begin{aligned}
m^{2}\left(q^{2}\right) & =-\frac{g^{2} C_{A}}{1+G\left(q^{2}\right)} \frac{d-1}{q^{2}} \int_{k} m^{2}(k) \Delta(k) \Delta(k+q)\left[(k+q)^{2}-k^{2}\right] \\
& -\frac{g^{4} C_{A}^{2}}{1+G\left(q^{2}\right)} \frac{3}{2 q^{2}} \int_{k} \frac{Y\left(k^{2}\right)}{k^{2}}(k \cdot q) \Delta(k) \Delta(k+q)\left[m^{2}(k+q)-m^{2}(k)\right]
\end{aligned}
$$

Take the $q \rightarrow 0$ limit, use the seagull identity and introduce spherical coordinates

$$
m^{2}(0)=-\frac{3 C_{A}}{8 \pi} \alpha_{s} F(0) \int_{0}^{\infty} \mathrm{d} y m^{2}(y)\left\{\left[1-\frac{1}{2} g^{2} C_{A} \frac{Y(y)}{y}\right] y^{2} \Delta^{2}(y)\right\}^{\prime}
$$

two-loop contribution to the mass equation

Calculate Y to lowest order in perturbation theory

$$
\begin{aligned}
Y\left(k^{2}\right) & =k_{\alpha} \int_{\ell} \frac{1}{\ell^{2}(\ell+k)^{2}} P^{\alpha \rho}(\ell) P^{\beta \sigma}(\ell+k) \Gamma_{\sigma \rho \beta}^{(0)}(-\ell-k, \ell, k) \\
& =\frac{1}{(4 \pi)^{2}} k^{2}\left[\frac{15}{4}\left(\frac{2}{\epsilon}\right)-\frac{15}{4}\left(\gamma_{\mathrm{E}}-\log 4 \pi+\log \frac{k^{2}}{\mu^{2}}\right)+\frac{33}{12}\right]
\end{aligned}
$$

Renormalize subtractively

$$
Y_{\mathrm{R}}\left(k^{2}\right)=-\frac{1}{(4 \pi)^{2}} \frac{15}{4} k^{2} \log \frac{k^{2}}{\mu^{2}}
$$

Substitute to the mass equation to get the final equation

$$
m^{2}(0)=-\frac{3}{8 \pi} \alpha_{s} C_{A} F(0) \int_{0}^{\infty} \mathrm{d} y m^{2}(y) \underbrace{[\left(1+\frac{15 C_{A}}{32 \pi} \alpha_{s} \log \frac{y}{\mu^{2}}\right) \overbrace{\mathcal{Z}^{2}(y)}^{y^{2} \Delta^{2}(y)}]^{\prime}}_{\mathcal{K}(y)}
$$

(quenched) numerical analysis

I. L. Bogolubsky et al., Phys. Left. B676, 69 (2009)

(quenched) numerical analysis

Solutions of the integral condition for the quenched $S U(3)$ mass found in lattice simulations

$$
m^{2}(0) \approx 0.14
$$Back to monotonically decreasing massesNatural notion of a critical couplingQCD has to be "strong enough" to dynamically generate a gluon massFor the unquenched lattice case we find

$$
\bar{\alpha}_{s} \approx 0.83
$$

(unquenched) numerical analysis

(unquenched) numerical analysis

BFM on the lattice DLhat oll rue licrice

quantizing gauge theories in a backgroundConsider quantum fluctuations around some non-trivial background

$$
A_{\mu}=\widehat{A}_{\mu}+Q_{\mu}
$$One wishes to carry out the path integral over Q, e.g., to captures the main features of topologically inequivalent sectors of the theoryMany examples in the literature:'t Hooft computation of the one-loop effective action in an instanton configurationQuantum corrections around static solutions (baryons) in chiral lagrangiansA second point of view is the BFMConsiders the background field as an unspecified sourceExploits residual gauge invariance of the (gauge fixed)

Set to zero after taking the appropriate derivatives of the vertex functional, wrt to the background theory to simplify the calculations (background WI)

quantizing gauge theories in a
 background

Consider quantum fluctuations around some non-trivial background

$$
A_{\mu}=\widehat{A}_{\mu}+Q_{\mu}
$$

One wishes to carry out the path integral over Q, e.g., to captures the main features of topologically inequivalent sectors of the theoryMany examples in the literature:'t Hooft computation of the one-loop effective action in an instanton configurationQuantum corrections around static solutions (baryons) in chiral lagrangians

A second point of view is the BFMConsiders the background field as an unspecified source Exploits residual gauge invariance of the (gauge fixed) theory to simplify the calculations (background WI)

Can we implement the BFM in a fashion suitable for non-perturbative analysis?

Can one control in a unique way the dependence of the vertex functional (local and non-local) on the background by symmetry arguments only?

The answer is a surprising yes!The appropriate mathematical tool is a canonical transformationSymmetry pattern common to perturbation theory, lattice, non-perturbative analytical method
Hope for bridging these computations in the relevant matching regimes
Very nice analogy with the theory of finite canonical transformations in classical analytical mechanics

Dynamical ghosts are not needed: we can implement the BFM in nonperturbative lattice gauge theory

$$
\mathcal{F}[g]=-\int \mathrm{d}^{4} x \operatorname{Tr}\left(A_{\mu}^{g}-\widehat{A}_{\mu}\right)^{2}
$$

[^0]Conclusions \& outlook oncin?lous ox onrion

Lot of results...

Unquenched SDEs and lattice simulation

- All-order mass equationGeneral non-perturbative
formulation of the BFMBFM on the lattice
..much more to be done
Finite temperature, chemical potential,...Explore the new BFM formulationLattice simulations of PT
Green's functions2PI formalism in the BFM...

the end

[^0]: A_{μ}^{g} is the gauge transform of the gauge
 field

