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PT-BFM: a primerPT-BFM: a primer



Schwinger-Dyson eqs: way of treating purely non-perturbative 
phenomena (e.g., mass gap generation)

Infinite system of coupled non-linear 
integral equations

captures the full quantum 
e.o.m.
expansion about the free-field vev, but finally 
no reference to it

Require a truncation scheme
gauge and renormalization group 
invariance should be respected

Gluon propagator

BRST demands q
α

5∑

i=1

(ai)αβ = 0

very difficult diagrammatic 
verification
cannot truncate in any 
obvious way

Retaining (a1) and (a2) only is not correct even 
at one loop

Adding (a3) is not sufficient for a full analysis; 
beyond one loop

q
αΠαβ(q)|(a1)+(a2) != 0 q

αΠαβ(q)|(a1)+(a2)+(a3) != 0

(problems with)

conventional formalism
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captures the full quantum 
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no reference to it
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gauge and renormalization group 
invariance should be respected

Gluon propagator

BRST demands q
α

5∑

i=1

(ai)αβ = 0

very difficult diagrammatic 
verification
cannot truncate in any 
obvious way

Retaining (a1) and (a2) only is not correct even 
at one loop

Adding (a3) is not sufficient for a full analysis; 
beyond one loop

q
αΠαβ(q)|(a1)+(a2) != 0 q

αΠαβ(q)|(a1)+(a2)+(a3) != 0

(problems with)

conventional formalism

Check transversality of the 
answer at the end of the calculation
Approximate gauge-invariance 
(might be even lost in intermediate steps)

Resum the equation into a new 
one with better truncation properties
Gauge invariance exactly 
preserved at each step

conventional PT-BFM scheme
Results possibly plagued by gauge 
artifacts

Results are fully gauge 
invariance 

(“plug & pray”)

There are two approaches
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PT-BFM resummed

Schwinger-Dyson series
D. B. & J. Papavassiliou, Phys. Rev. D77, 061702(R) (2008)

D. B. & J. Papavassiliou, JHEP 11, 063 (2008) 

Apply the pinch technique to the Schwinger-Dyson equation of the 
gluon propagator

graphs made out of new vertices, 
(inside conventional props)
new vertices corresponds to BFM 
vertices

external gluons dynamically 
converted into background 
gluons

New Schwinger-Dyson equation has a special structure
Subgroups (one-/two-loop dressed gluon/ghost) are individually transverse

Express the Schwinger-Dyson eq in terms of a background-
quantum identity

∆̂(q2) =
[
1 + G(q2)

]
−2

∆(q2)

In 4d the function G is directly related to the inverse of the ghost 
dressing function 

F�1(q2) ⇡ 1 +G(q2)

Problem
Not a genuine Schwinger-Dyson 
equation (mixes pinch 
technique and 
conventional propagators) 

��1(q2)[1 +G(q2)]2Pµ⌫(q) = q2Pµ⌫(q)
10X

i=0

(ai)µ⌫



Idea
If                has a pole at
the vector meson is massive 
even though it is massless in 
the absence of interactions

⇧(q2) q2 = 0

BQQ vertex and

Schwinger mechanism

Dyson resum �(q2) =
1

q2 [1 + ⇧(q2)]

Requires massless, longitudinally coupled Goldstone like poles 1/q2

Occur dynamically (even in the absence of canonical scalar fields) as 
composite excitations in a strongly coupled gauge theory

J. S. Schwinger, Phys. Rev. 125, 397 (1962)
J. S. Schwinger, Phys. Rev. 128, 2425 (1962)

R. Jackiw and K. Johnson, Phys. Rev. D8, 2386 (1973)
J. M. Cornwall and R. E. Norton, Phys. Rev. D8, 3338 (1973)

E. Eichten and F. Feinberg,  Phys. Rev. D10, 3254 (1974)Dynamics enters through the three-gluon vertex

Longitudinally coupled massless poles

Not a kinematic singularity, rather bound 
states poles non-perturbatively produced

Do not appear in the S matrix of the theory 
(“eaten-up” by the gluons to become massive)

Instrumental for ensuring that

��1(0) > 0

+ + · · · +

pole1
q2



Γ̃′ = + + · · · ++ +

pole1
q2

︸ ︷︷ ︸

Γ̃m

︸ ︷︷ ︸

Ṽ

PT-BFM

DMG generation
How does dynamical gluon mass generation work in practice?

Assumes the formation of a longitudinally coupled massless poles that... 

...will modify the vertex of the theory...

...which will lead to massive type solutions of the corresponding SDE

Two levels

Kinematical J(q2) ⇠ ln q2 �! Jm(q2) ⇠ ln(q2 +m2)

q2Jm(q2)
q2!0�! 0

��1(q2) = q2J(q2) �! ��1
m (q2) = q2Jm(q2)�m2(q2)

Dynamical V is totally longitudinally
coupled (PPPV = 0)

  massive 
propagators

e� �! e�0 = e�m + eV

A. Aguilar, D. B. & J. Papavassiliou, Phys. Rev. D84, 085026 (2011)



Γ̃′ = + + · · · ++ +

pole1
q2

︸ ︷︷ ︸

Γ̃m

︸ ︷︷ ︸

Ṽ

  satisfies the same identities as    with the replacement J �! Jm

    satisfies the same identities as    with the replacement � �! �m

PT-BFM

DMG generation

q↵e�0
↵µ⌫(q, r, p) = p2[Jm(p2)Pµ⌫(p)�m2(p2)]� [r2Jm(r2)�m2(r2)]Pµ⌫(r)

q↵e�↵µ⌫
m (q, r, p) = p2Jm(p2)Pµ⌫(p)� r2Jm(r2)Pµ⌫(r)

e�m

e�e�0

e�

The    and    vertices can be explicitly determined by exploiting the total 
longitudinality condition                                 and the STIs/WI they satisfy

eVV

Not needed (in the Landau gauge) at the one-loop dressed level but fundamental at the two-
loop dressed level

PPPV = PPP eV = 0

A. Aguilar, D. B. & J. Papavassiliou, Phys. Rev. D84, 085026 (2011)



Unquenching the SDEsUnquenching the SDEs
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adding

quarks to the SDE
µ ν

k

k + q

q

(a11)

bXµ⌫(q) =

Gauge invariant subset (also in in 
the conventional formulation!)

PT-BFM vertex satisfies a linear WI
Many Abelian Ansatze available in the 
market (e.g., Ball-Chiu, Curtis-Pennington)

��1
Q (q2)Pµ⌫(q) =

q2Pµ⌫(q) + ib⇧Q
µ⌫(q) + i bXµ⌫(q)

[1 +GQ(q2)]2

Adding dynamical quarks gives

Suffix Q indicates the effects of 
quarks on quenched quantities

+ · · ·

+ · · ·

Highly non-linear propagation of the effect

The presence of quarks will also affect the original 
quenched diagrams 

Operating assumption: non-linear effects are 
suppressed wrt diagram (a11)

A. Aguilar, D. B. & J. Papavassiliou,  1204.3868 [hep-ph]



adding

quarks to the SDE

bXµ⌫(q) = �g2df

Z

k
Tr

h
�µS(k)b�⌫(k + q,�k,�q)S(k + q)

i

S�1(k) = �i
⇥
A(k2)k/�B(k2)

⇤
= �iA(k2)

⇥
k/�M(k2)

⇤

q⌫b�⌫(k + q,�k, q) = S�1(k + q)� S�1(�k)

µ ν
k

k + q

q

(a11)

bXµ⌫(q) =

A. Aguilar, D. B. & J. Papavassiliou,  1204.3868 [hep-ph]

Non-perturbative calculation of the term

A and B are obtained from solving 
the quark gap equation

valid for both BC 
and CP vertices

In the           limit q ! 0

bX(0) = � 2g2

d� 1

Z

k

1

A2(k2 �M2)2
�
A
⇥
(2� d)k2 + dM2

⇤
+ 2A0k2

�
k2 +M2

�
� 4k2B0M

 

Use the seagull identity

keeps the gluon massless in the 
absence of a DMG mechanism

Z

k
k2

@f(k2)

@k2
+

d

2

Z

k
�(k) = 0 bX(0) = 0 The quark loop 

does not 
contribute to the 
gluon mass!

f(k2) =
⇥
A(k2)

�
k2 �M2

�⇤�1



adding

quarks to the SDE
So what happens when quarks are present?

��1(q2) = q2J(q2)�m2(q2) �! ��1
Q (q2) = q2JQ(q

2)�m2
Q(q

2)

           does not affect the value of the mass and therefore 
contributes to  
bX(q2)

JQ(q
2)

q2JQ(q
2) = q2J(q2) + i

bX(q2)

1 +G(q2)

However

�2 = m2
Q(0)�m2(0) 6= 0

First-principle 
determination would 
require the 
knowledge of the 
mass equation 

Put everything together to write 

�Q(q
2) ' �(q2)

1 +
n

i bX(q2) [1 +G(q2)]�2 � �2
o

�(q2)

Use for    and F,G
the quenched lattice 
data 

�

A. Aguilar, D. B. & J. Papavassiliou,  1204.3868 [hep-ph]



adding

quarks to the SDE
A. Aguilar, D. B. & J. Papavassiliou,  1204.3868 [hep-ph]



adding

quarks to the SDE
A. Aguilar, D. B. & J. Papavassiliou,  1204.3868 [hep-ph]

Suppression of the “swelling” in the  
intermediate momenta region

As anticipated one has the same IR fixed point as in 
the quenched case

Use extrapolation (cubic B-spline method) to 
account for our inability of determining 

Minor difference (~3%) between the BC and CP 
vertices

�

Gluons are 
heavier when 
quarks are included



adding

quarks to the SDE
A. Aguilar, D. B. & J. Papavassiliou,  1204.3868 [hep-ph]



Unquenching the latticeUnquenching the lattice



adding

quarks on the lattice
M. Cristoforetti et al.,  in preparation

No systematic study of the IR sector with dynamical quarks

2007 data from the Adelaide (Bowman et al., Phys. Rev. D76, 094505) group but 

Use staggared fermions configurations 
(MILC collaboration)

Consider only 2 light and 1 heavy quarks 

Show only the gluon dressing function 
(no gluon propagator, no ghost)

You have to digitalize them...

Use ETMC configurations projected to the Landau gauge

2 light quarks and 2+1+1 configurations 

Very small current masses for up/down quarks 20-40 MeV; strange 95 MeV, 
charm 1.51 GeV

Compensate for O(4) breaking artifacts (no cylindrical cut on data but H(4) extrapolation)

Study both the gluon and the ghost IR sector
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(preliminary)

SDEs comparison
M. Cristoforetti et al.,  in preparation
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All-order mass eq.All-order mass eq.



PT-BFM one-loop dressed

mass equation
Landau gauge mass equation (one-loop dressed)

Dynamical equation derived as what survives in the            limit

This mass equation is different from the one that has appeared in PRD 84, 085026 

Addresses a very subtle issue related to taking the trace and completing the seagull 
identity (resulting, rather ironically, in a breaking of transversality)

(a1) (a2)

µ, a ν, b

α, m

β, n σ, n′

ρ, m′

k + q

k

q k

µ, a ν, b

α, m ρ, m′Γ̃′

q ! 0

Seagull identity can only happen in the        part  gµ⌫

Sufficient to look at what survives the limit in the longitudinal terms (keeping 
in mind that the answer must be transverse) 

m2(q2) = � 3g2CA

1 +G(q2)

1

q2

Z
d4k

(2⇡)4
m2(k2)�(k)�((k + q)2)

⇥
(k + q)2 � k2

⇤

The             limit is particularly interesting

m2 cannot be a 
monotonically decreasing 
function

q ! 0

m2(0) = �3

2
g2CAF (0)

Z

k
m2(k2)[k2�2(k2)]0

The             limit of the equation is however the sameq ! 0

must reverse sign and 
display a sufficiently deep 
negative region at 
intermediate momenta



PT-BFM one-loop dressed

mass equation
Within the standard angular approximation, the old equation yields

A. Aguilar, D. B. & J. Papavassiliou, Phys. Rev. D84, 085026 (2011)

R(x) =
1

2

Z
x

0
dy ym2(y)

⇣
1� y

x

⌘
�2(y) +�(x)

Z
x

0
dy y

⇣
y � x

4

⌘
m

2(x)�m

2(y)

x� y

�(y)

� m

2(x)x2�2(x) +
3

4

Z
x

0
dym2(y)[y2�2(y)]0

m

2(x) = m

2(0)
F (x)

F (0)
+

↵sCA

2⇡
F (x)R(x)



(a5) (a6)

µ, a ν, b

α, m

β, n

γ, r τ, r′

σ, n′

ρ, m′

(+ k

(

k + q

q q

µ, a

γ, r

β, n

α, m

ν, b

τ, r′
k + q

δ, s

ε, s′

ρ, m′

σ, n′
(

(+ k k

Γ̃′

Γ′

Γ̃′

PT-BFM

two-loop dressed diagrams

We consider the two-loop dressed diagrams

If ghosts are massless these are the only contributions missing

A new ingredient appears:     for the four-gluon vertex.

In principle many new ghost Green’s functions appears due to the complicate STIs 
structure satisfied by the conventional four-gluon vertex 

However in the Landau gauge we only need to know the contraction:

eV4

PPP eV4 = linear combinations of V3
no additional ghost Green’s 
function @ 2 loops

(a8)

q

µ, a

α, r

n

m

ν, b

ρ, r′
k + q

β, s

σ, s′

m′

n′
&

&+ k k

Γ̃′

Γ′

It is therefore mandatory to explicitly determine the pole part of the 
three-gluon vertices     and  eV3 V3



Y (k2) = k↵
Z

`
�(`)�(`+ k)P↵⇢(`)P��(`+ k)I��⇢�(�`� k, `, k)

two-loop contribution to the

mass equation

(a5) (a6)
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(+ k

(
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q q
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3

2
i

Z

k

Y (k2)

q2k2
�(k)�(k + q)(k · q)[m2(k)�m2(k + q)]

Add this to the (one-loop) mass equation to get (Euclidean space)

m2(q2) = � g2CA

1 +G(q2)

d� 1

q2

Z

k
m2(k)�(k)�(k + q)

⇥
(k + q)2 � k2

⇤

� g4C2
A

1 +G(q2)

3

2q2

Z

k

Y (k2)

k2
(k · q)�(k)�(k + q)

⇥
m2(k + q)�m2(k)

⇤
.

Take the           limit, use the seagull identity and introduce spherical coordinates q ! 0

m2(0) = �3CA

8⇡
↵s F (0)

Z 1

0
dym2(y)

⇢
1� 1

2
g2CA

Y (y)

y

�
y2�2(y)

�0



two-loop contribution to the

mass equation
Calculate Y to lowest order in perturbation theory

Y (k2) = k↵

Z

`

1

`2(`+ k)2
P↵⇢

(`)P ��
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�

Renormalize subtractively

YR(k
2
) = � 1

(4⇡)2
15

4

k2 log
k2

µ2

Substitute to the mass equation to get the final equation

m2
(0) = � 3

8⇡
↵s CAF (0)

Z 1

0
dym2

(y)

"✓
1 +

15CA
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I. L. Bogolubsky et al., Phys. Lett. B676, 69 (2009)
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Natural notion of a critical coupling 

Solutions of the integral condition for the 
quenched SU(3) mass found in lattice simulations 

m2(0) ⇡ 0.14

QCD has to be “strong enough” 
to dynamically generate a gluon mass

For the unquenched lattice case we find
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possibly, a steeper running

Solutions of the integral condition for the 
unquenched SU(3) mass found in SDE studies (nf =2)

m2(0) ⇡ 0.156
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Consider quantum fluctuations around some non-trivial background

quantizing gauge theories in a 

background
bA

One wishes to carry out the path integral over Q, e.g., to captures the main 
features of topologically inequivalent sectors of the theory

Many examples in the literature: 

‘t Hooft computation of the one-loop effective action in an instanton configuration

Quantum corrections around static solutions (baryons) in chiral lagrangians

A second point of view is the BFM

Considers the background field as an unspecified source 

Exploits residual gauge invariance of the (gauge fixed) 
theory to simplify the calculations (background WI)

Aµ = bAµ +Qµ

Set to zero after taking the appropriate 
derivatives of the vertex functional, wrt 
to the background  



Consider quantum fluctuations around some non-trivial background

quantizing gauge theories in a 

background
bA

Aµ = bAµ +Qµ

One wishes to carry out the path integral over Q, e.g., to captures the main 
features of topologically inequivalent sectors of the theory

Many examples in the literature: 

‘t Hooft computation of the one-loop effective action in an instanton configuration

Quantum corrections around static solutions (baryons) in chiral lagrangians

A second point of view is the BFM

Considers the background field as an unspecified source 

Exploits residual gauge invariance of the (gauge fixed) 
theory to simplify the calculations (background WI)

Can we implement the BFM in a fashion suitable for 
non-perturbative analysis?

Set to zero after taking the appropriate 
derivatives of the vertex functional, wrt 
to the background  



BFM as a 

canonical transformation
Can one control in a unique way the dependence of the vertex functional 
(local and non-local) on the background by symmetry arguments only? 

The answer is a surprising yes!

The appropriate mathematical tool is a canonical transformation

Symmetry pattern common to perturbation theory, lattice, non-perturbative analytical 
method 

Hope for bridging these computations in the relevant matching regimes

Very nice analogy with the theory of finite canonical transformations in 
classical analytical mechanics

Dynamical ghosts are not needed: we can implement the BFM in non-
perturbative lattice gauge theory 

D. B. & A. Quadri,  1203.6637 [hep-ph]

also A. Cucchieri & T. Mendez,  1204.0216 [hep-ph]

F [g] = �
Z

d4xTr (Ag
µ � b

Aµ)
2       is the gauge 

transform of the gauge 
field

Ag
µ
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Lot of results... 
Unquenched SDEs and lattice 
simulation
All-order mass equation
General non-perturbative 
formulation of the BFM

...much more to be done 

BFM on the lattice

Finite temperature, chemical 
potential,...

Explore the new BFM formulation

Lattice simulations of PT 
Green’s functions

2PI formalism in the BFM

...



the end

thankyou


