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Motivation — Bulk and Shear Viscosities

THY = T(O) (€, P;u*) + (1) “(¢,m;ut, B,ut) particle-antiparticle
symmetric systems
—) GMT“” — () or systems w/o
conserved charge
number density

C : bulk (volume) viscosity 1 - shear viscosity

change in change in
volume BUT shape BUT
constant constant
shape/form volume

=) gpplication of ideal hydrodynamics modelling heavy-ion collisions at
RHIC and LHC suggests at most small dissipative effects;
viscous calculations confirm this
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Shear Viscosity of the QGP?

pitch: ) ~ 2.3 - 10% Pa - s QGP: even more liquid

== Quasiparticle Picture: 7) ~ p (p)A(p) large
Is this necessarily true?



Quasiparticle Modell (QPM)

QPM based on ¢ - functional approach to QCD:

Q[DS] = 1Tt [In D! HD] Tr [InS™! - XS| + ®[D, 5]

@ @

—%-Q-+%~Q~—~O- ,HzQ?—%
2=_&_ , L= — =&

modell for equilibrium thermodynamics —» corresponding energy-momentum tensor:

1/ U 0 1
T80 =Y [ e p £ + g BI{IL (1))

for excitations with medium-modified
dispersion relations (thermal mass) EZ2 (T) = p* + IL;(T)

OOI)—k
|
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Effective Kinetic Theory

> self-consistent generalization of 7%

(0)

space-time dependence of 7'(x) implies [/ = F(x)
is a functional of the distribution function f(x, p)

to non-equilibrium systems:

> to assure basic relations: - 3MTMV (3;) — ()

- (T /5 f(x,p) = E (Fermiliquids)

- in thermal equilibrium: € + P = 7oL
one generalizes (in case of a one-component system) to
v v
T (z) = | (Qﬁ)sE(m)p p” f(z,p) + g" B[lI(z)]
< A
kinetic term potential term

T'"¥ closely related to effective kinetic equation of Boltzmann-Vlasov type for the
single-particle distribution function f(x p): ([, +V)f = C[f]

> above conditions satisfied if 8B = —3 f (27r)3E(:1;) f(a:, p) related to form of
Vlasov-term



Bulk and Shear
Viscosity Coefficients

for quasiparticle systems

(L+V)f=Clf]



Bulk and Shear Viscosities

> decompose """ and compare w/ definition: Tﬁ’; = CAM 9 u® + 1 S“Vaﬁﬁo‘uﬁ

bulk viscosity:

1 d>p ) T
© - _/(zw)?’EfO(Hdlfo)E

1) - 2+ by

shear viscosity:

1 dp _ T
1= 17 | Geppl O R - )

cf. Chakraborty, Kapusta (2010)
& MB, Kampfer, Redlich (2009,'10,'11)



Bulk and Shear Viscosities

differences: Excitations with constant vs. thermal mass

bulk viscosity:
_ l d’p 0 -1 p0y T
C = T/Wfﬂ_kd f)@
2
{ () - QQ@)T 2l - (pu>2]}

shear viscosity:
1 d>p 1 T

1 = 57 ) @l G Ogp - oo




Adjust Parameters in Thermal Equilibrium — SU,(3)

2
I1,(T) = %T2G2(T) , Where GZ(T) = Y 10;(83(T_T3))2
3 - I ' 1

Boyd et al., NPB 469 (1996)
Okamoto et al., PRD 60 (1999)

G?(T) adjusted

- SU(3)

T/T.
> maximum around 7'/T,. ~ 1.15



Relaxation Time

== concentrate on SU(3): 2 <» 2 gluon-gluon scatterings

parametrically
-1 4 2 - - ; .
7 ~TG*(T)In(a/G*“(T))

3 -

based on perturbative considerations

cross section depends crucially ok 1

on ratio of maximum to minimum £

momentum transfer ~ a ®

cf. Heiselberg (1993) T & i
0] 2 3 4

T/T.

==) parametric dependencies of pQCD results for ( and 7 on coupling and
temperature reproduced at large I’



Quantitative Results — Specific Shear Viscosity

> behaviour close to 1. driven by 7

 SU(3) L 821007

n/s

01:

A Nakgmura, Sakai, PRL 94 (2005) .
Sakgi, Nakamura, PoS LAT2007 221 (2007) 1
Meyegr, PRD 76 (2007) -

0'011 10 100 1000

T/T,

cf. MB, Kampfer & Redlich (2009, 2011)



Quantitative Results — Specific Bulk Viscosity

|
Sy 0.8 . . : : :
0.8 c (3) Meyer, PRD 76 (2007) & PRL 100 (2008) | ™
15 i Meyer, NPA 830 (2009) 1
- 0.6} .
0.6 < _
$20.4F .
1 +
£ 1 1
J.04F O'z_k' SU.(3)1 -
] combined sound channel
0 N 1 " 1 N
1 2 3 4
0.2 /T, —
1 \ 10
T/T,
holographic QCD,

cf. Girsoy et al. (2009) cf. MB, Kampfer & Redlich (2011)



Ratio of Bulk to Shear
Viscosities
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Bulk to Shear Viscosity Ratio

Big Theoretical Motivation: Viscosity coefficients in strongly
interacting Quantum Field Theories
can be deduced from Black Hole Physics

- Kovtun-Son-Starinets bound: 77/s > 1/(4m)

- similar universal bounds for other transport coefficients are unknown
BUT in some special classes of theories with holographically dual
supergravity description there exists a lower bound for the ratio

Buchel bound: ((/n)p > 2 (% — Ug)

» specific strongly coupled but nearly C/n ~ Av? = (% — fug)
conformal theories (AdS/CFT)

« for scalar theory or photons in hot fluid ¢(/n = 15 (Av§)2
parametrically correct also in pQCD (weak coupling)

- might expect that there is a gradual change from one behaviour to the
other as a function of temperature



Bulk to Shear Viscosity Ratio

08— T T 1 1 —HineardependenceonAv?

Buchel's bound satisfied
. forl' < 1.157T,

* ‘Buchel's

- /
> 04F /. bound -~
0.2F i
L
’ / linear dependence 4
. ] . ] . ] . ] . | . ' ' i
% 0.05 0.1 015 02 025 03 | SUC(g) 1
Avg 3.5F -
3 _
o
;2.5— -
2F -
-forT — o0 : Av?—>0 1.5F .
-forl'— T, : Av?—>1/3 1 : —T——
0 0.05 0.1 0.15 0.2 0.25 0.3



Estimating the QGP Specific Shear Viscosity

mm) |eading-order estimate:

1N = Tg + Tq
Ti inversely additive

2.5 I I
== SU(3)
2 [==2+1 e -
LR T Ny =
1.5

Csernai, Kapusta, McLerran
PRL 97 (2006)

fixed coupling pQCD

4
T/T.



Jet Quenching Parameter

dynamical definition: G(A) = qu<Ad qL Ucllzrel qL cf. Arnold, Xiao (2008)

measures transverse momentum transfer squared per unit distance to an energetic parton

assumption: A ~ T’

interaction between energetic parton
and medium is of same structure and 1OF
strength as interaction among thermal
excitations
; —1 B
- L~ (ﬂ) =
T3 S C\l\ 1F
cf. Majumder, Miiller, Wang (2007) % -
O,
5SS
1 2 T/Tc 3 4
1 1
0.11 2 3 4



Outlook

mm) Take running of coupling into account in perturbative approach
with Marlene Nahrgang

' | Motivation: unique relation between
SUA3) n/sand G?

running coupllngf

1(A) = - d? dgqei
bé“ \\\\\\\ \\\\\\\\\\\\\\\\\\\\ : Josn COEL L

1 fixed coupling- fixed coupling jet quenching
0 5'_ ) parameter UV-divergent,
‘ of. Peshier (2006) while with running coupling

b remains finite
1 2 3 1 5

T/Te




Outlook

mm) Take running of coupling into account in perturbative approach
with Marlene Nahrgang

' | Motivation: unique relation between
SUA3) n/sand G?

running coupllngf

1(A) = - d? dgqei
bé“ \\\\\\\ \\\\\\\\\\\\\\\\\\\\ : Josn COEL L

1 fixed coupling- fixed coupling jet quenching
0 5'_ ) parameter UV-divergent,
‘ of. Peshier (2006) while with running coupling

b remains finite
1 2 3 1 5

T/Te

Work in Progress!



Conclusions

« knowing QCD transport coefficients important for understanding
the behaviour of strongly interacting matter observed in high-

energy nuclear collisions
m=) picture: excitations with effective thermal mass

- inclusion of mean field term in energy-momentum tensor

necessary for self-consistency of the approach
- follows from kinetic equation of Boltzmann-Vlasov type

- influence of a medium-dependent effective mass in dispersion
relation minor on shear but prominent in bulk viscosity

- fairly nice agreement w/ available IQCD data; specific
shear viscosity as small as 1 /47

- ratio of bulk to shear viscosities exhibits both quadratic and
linear dependence on conformality measure; turning point
located at the maximum in the scaled interaction measure

- jet quenching parameter pronounced near phase transition
> influence on energy loss sensitive observables
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