
The QCD phase diagram in NχFD

Marlene Nahrgang
SUBATECH, Nantes & FIAS, Frankfurt

Excited QCD 2012, Peniche



L = qα(iγµDµ,αβ −mqδαβ)qβ − 1
4

F a
µνF

µν
a



How to study the QCD phase diagram...

... be brave and solve

Z (T , µB) =
∫
D(A,q,q†)e−SE

QCD

ab initio and nonperturbatively,

... be strong and collide heavy
ions at ultrarelativistic energies,

... be creative and study effec-
tive models of QCD. Leff
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Critical point

I m2
σ = ∂2V

∂σ2 → 0
I correlation length diverges

ξ = 1
mσ
→ ∞

I universality classes
for QCD: O(4) Ising model in
3d⇒ 〈σ2〉 ∝ ξ2

I renormalization group
I critical opalescence

⇒ Large event-by-event fluctuations in thermal systems!



First order phase transitions

I two degenerate minima
separated by a barrier

I latent heat
I phase coexistence
I supercooling effects in

nonequilibrium situations
I nucleation
I spinodal decomposition

(I.N.Mishustin, PRL 82 (1999); Ph.Chomaz, M.Colonna,

J.Randrup, Physics Reports 389 (2004))

⇒ (Large) fluctuations in single events in nonequilibrium situations!



The critical point in heavy-ion collisions

〈(∆σ)2〉 = T
V

ξ2

assuming a coupling of the order parameter to pions gσππ and
protons Gσp̄p

〈(δN)2〉
N

∝ ξ2 ∝ 〈(∆σ)2〉

(M. A. Stephanov, K. Rajagopal and E. V. Shuryak, PRL 81 (1998), PRD 60 (1999))

(NA49 collaboration J. Phys. G 35 (2008))

system size dependence

(NA49 collaboration, Acta Phys. Pol. 41 (2010)

more systematically in NA61



The critical point in dynamic systems

long relaxation times near a critical point⇒ critical slowing down
⇒ the system is driven out of equilibrium

d
dt

mσ(t) = −Γ[mσ(t)](mσ(t)−
1

ξeq(t)
)

with Γ(mσ) =
A
ξ0
(mσξ0)

z

z = 3
(dynamic) critical exponent

⇒ ξ ∼ 1.5− 2.5 fm

(B. Berdnikov and K. Rajagopal, PRD 61 (2000)); D.T.Son, M.Stephanov, PRD 70 (2004); M.Asakawa, C.Nonaka, Nucl. Phys. A774 (2006))



Higher moments and the kurtosis

Higher moments are more sensitive to the growth of the correlation
length: 〈(δN)4〉/N ∝ ξ4

(M. A. Stephanov, PRL 102 (2009)

(STAR collaboration, CPOD 2011)

(MN, J.Phys.G 38 (2011))

I Kurtosis is negative at the critical point. (M. A. Stephanov, PRL 107 (2011)

I Negative kurtosis is also given by superposition many particle
distributions, net-baryon number conservation...



Motivation

I Fluctuations have so far been investigated in static, equilibrated
systems.

I However, systems created in heavy-ion collisions are finite in
size and time and inhomogeneous.

I Necessary to propagate fluctuations explicitly!

I Nonequilibrium chiral fluid dynamics
(NχFD):

I phase transition model +
I dissipation and noise +
I fluid dynamics



Motivation

Two questions in finite, dynamic systems:

I Are nonequilibrium effects strong enough to develop signals of
the first order phase transition?

I Do enhanced equilibrium fluctuations at the critical point survive?



The linear sigma model with constituent quarks

L = q
[
iγµ∂µ − g (σ + iγ5τ~π)

]
q + 1/2

(
∂µσ

)2
+ 1/2

(
∂µ~π

)2−U (σ, ~π)

U (σ, ~π) =
λ2

4

(
σ2 + ~π2 − ν2

)2
− hqσ−U0

g = 3.3: crossover at µ = 0 g = 5.5: first order pt at µ = 0

(O. Scavenius, A. Mocsy, I.N. Mishustin, D.H. Rischke, PRC 64 (2001); C.E. Aguiar, E.S. Fraga, T. Kodama, J.Phys.G 32 (2006))



The effective potential at µB = 0

Ωeff = −
T
V

ln Zth = −dqT
∫ d3p

(2π)3 ln
(

1 + exp
(
−E

T

))
+ U (σ, ~π)

with dynamically generated quark masses E =
√

p2 + g2σ2 + g2~π2

For a qualitative study tune the strength of the phase transition via the
coupling g.



Nonequilibrium chiral fluid dynamics - NχFD

I Langevin equation for the sigma field: damping and noise from
the interaction with the quarks

∂µ∂µσ +
δU
δσ

+ gρs + η∂t σ = ξ

I Fluid dynamic expansion of the quark fluid = heat bath, including
energy-momentum exchange

∂µT µν
q = Sν = −∂µT µν

σ

I Nonequilibrium equation of state

p = p(e, σ)

=⇒ Selfconsistent approach within the two-particle irreducible effec-
tive action!

(MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011))



Semiclassical equation of motion for the sigma field

∂µ∂µσ +
δU
δσ

+ gρs + η∂t σ = ξ

damping term η and noise ξ for k = 0

η = g2 dq

π

(
1− 2nF

(mσ

2

)) (m2
σ

4 −m2
q)

3
2

m2
σ

〈ξ(t)ξ(t ′)〉 = 1
V

δ(t− t ′)mση coth
(mσ

2T

)
below Tc damping by the interaction with the hard pion modes, apply
η = 2.2/fm
(T. S. Biro and C. Greiner, PRL 79 (1997))



Evolution in a box

I nonexpanding, finite heat bath
I initialize the sigma field in equilibrium at T > Tc

I initialize the energy density at a Tsys < Tc

I update sigma field on the grid according to the Langevin equation



Equilibration for a heat bath with reheating
Critical point

relaxation of the σ field

temperature

Tc = 139.8 MeV

I During relaxation of the σ-field
the temperature of the heat
bath increases.

I Coupled dynamics equilibrate
at a given Teq and σeq.

I Green curves correspond to
scenarios with Teq near Tc .
⇒ Critical slowing down!

(MN, S. Leupold, M. Bleicher, PLB 711 (2012) )



Equilibration for a heat bath with reheating
First order phase transition

relaxation of the σ field

temperature

Tc = 123.3 MeV

I Strong reheating during
relaxation of the σ-field.

I Long (initial) relaxation times
for Tsys close to the phase
transition.

I Except for the scenario with
Tsys = 20 MeV the heat bath
reheats to T > Tc .

I System gets trapped in
metastable states.

(MN, S. Leupold, M. Bleicher, PLB 711 (2012))



Fluid dynamic expansion of the heat
bath

I very simple initial conditions: almond-shaped initial temperature
distribution, sigma field and energy density in equilibrium at T (x)

I 3+1d fluid dynamic expansion
I update sigma field on the grid according to the Langevin equation
I very good energy conservation



Reheating and supercooling

relaxation of the σ field temperature

I oscillations at the critical point
I supercooling of the system at the first order phase transition
I reheating effect visible at the first order phase transition

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962



Intensity of sigma fluctuations
in single events

dNσ

d3k
=

(ω2
k |σk |2 + |∂t σk |2)
(2π)32ωk

ωk =
√
|k |2 + m2

σ

mσ =
√

∂2Veff/∂σ2|σ=σeq

deviation from equilibrium

critical point

first order phase transition

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962



Realistic initial conditions

initial conditions from the hybrid UrQMD+hydro approach
(profiles from Pb+Pb at Elab = 40A GeV)
(H.Petersen et al. PRC 78 (2008))

energy density e sigma field σ



Dynamic domain formation
First order phase transition

sigma field fluctuations: ∆σ =
√
(σ− σeq)2

I highly supercooled state at t = 4.0 fm

(MN, I.Mishustin in preparation)
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Dynamic domain formation
First order phase transition

sigma field fluctuations: ∆σ =
√
(σ− σeq)2

I highly supercooled state at t = 4.0 fm
I dynamic formation of domains at t = 5.6 fm
I dynamic decay of domains at t = 7.2 fm

This could lead to non-statistical fluctuations in hadron multiplicities.
(MN, I.Mishustin in preparation)



Dynamic correlation length
Critical point

Correlation function: G(r ) ∝ exp(−r/ξ)

Growth of ξ up to 1.5− 2.5 fm in a dynamic model!

Very preliminary results, systematic study is presently carried out!



Dynamic enhancement of event-by-event fluctuations
Critical point

Enhancement of event-by-event fluctuations of the sigma field in a
critical point scenario!

Very preliminary results, systematic study is presently carried out!



Summary

I nonequilibrium chiral fluid dynamics including damping and noise
I energy-momentum conservation by the back reaction on the heat

bath
I effects of supercooling, reheating, critical slowing down
I dynamic formation and decay of domains at the first order phase

transition
I dynamic enhancement of event-by-event-fluctuations of the

sigma mode at the critical point




