The QCD phase diagram in $N_{\chi}FD$

Marlene Nahrgang
SUBATECH, Nantes & FIAS, Frankfurt

Excited QCD 2012, Peniche
\[\mathcal{L} = \overline{q}^\alpha (i \gamma^\mu D_{\mu,\alpha\beta} - m_q \delta_{\alpha\beta}) q^\beta - \frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a} \]
How to study the QCD phase diagram...

... be brave and solve

\[Z(T, \mu_B) = \int \mathcal{D}(A, q, q^\dagger) e^{-S_{\text{QCD}}^E} \]

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultrarelativistic energies,

... be creative and study effective models of QCD.
How to study the QCD phase diagram...

... be brave and solve

\[Z(T, \mu_B) = \int D(A, q, q^\dagger) e^{-S_{\text{QCD}}^E} \]

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultrarelativistic energies,

... be creative and study effective models of QCD.
How to study the QCD phase diagram...

... be brave and solve

\[Z(T, \mu_B) = \int \mathcal{D}(A, q, q^+) e^{-S_{\text{QCD}}^E} \]

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultrarelativistic energies,

... be creative and study effective models of QCD.

\[\mathcal{L}_{\text{eff}} \]
How to study the QCD phase diagram...

... be brave and solve

\[Z(T, \mu_B) = \int D(A, q, q^\dagger) e^{-S_{QCD}^E} \]

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultrarelativistic energies,

... be creative and study effective models of QCD.
Critical point

\[m_\sigma^2 = \frac{\partial^2 V}{\partial \sigma^2} \to 0 \]

- correlation length diverges
 \[\xi = \frac{1}{m_\sigma} \to \infty \]
- universality classes
 for QCD: \(O(4) \) Ising model in 3d \(\Rightarrow \langle \sigma^2 \rangle \propto \xi^2 \)
- renormalization group
- critical opalescence

\[\Rightarrow \text{Large event-by-event fluctuations in thermal systems!} \]
First order phase transitions

- two degenerate minima separated by a barrier
- latent heat
- phase coexistence
- supercooling effects in nonequilibrium situations
- nucleation
- spinodal decomposition

(I.N. Mishustin, PRL 82 (1999); Ph. Chomaz, M. Colonna, J. Randrup, Physics Reports 389 (2004))

⇒ (Large) fluctuations in single events in nonequilibrium situations!
The critical point in heavy-ion collisions

\[\langle (\Delta \sigma)^2 \rangle = \frac{T}{V} \xi^2 \]

assuming a coupling of the order parameter to pions \(g(\sigma \pi \pi) \) and protons \(G(\sigma \bar{p}p) \)

\[\frac{\langle (\delta N)^2 \rangle}{N} \propto \xi^2 \propto \langle (\Delta \sigma)^2 \rangle \]

(M. A. Stephanov, K. Rajagopal and E. V. Shuryak, PRL 81 (1998), PRD 60 (1999))

system size dependence

more systematically in NA61
The critical point in dynamic systems

long relaxation times near a critical point \Rightarrow critical slowing down \Rightarrow the system is driven out of equilibrium

$$\frac{d}{dt} m_\sigma(t) = -\Gamma[m_\sigma(t)](m_\sigma(t) - \frac{1}{\xi_{eq}(t)})$$

with $\Gamma(m_\sigma) = \frac{A}{\zeta_0} (m_\sigma \zeta_0)^z$

$z = 3$
(dynamic) critical exponent

$\Rightarrow \zeta \sim 1.5 - 2.5 \text{ fm}$

Higher moments and the kurtosis

Higher moments are more sensitive to the growth of the correlation length: \(\langle (\delta N)^4 \rangle / N \propto \xi^4 \) \(^{(M. A. Stephanov, PRL 102 (2009)}\)

Kurtosis is negative at the critical point. \(^{(M. A. Stephanov, PRL 107 (2011)}\)

- Negative kurtosis is also given by superposition many particle distributions, net-baryon number conservation...
Motivation

- Fluctuations have so far been investigated in static, equilibrated systems.
- However, systems created in heavy-ion collisions are finite in size and time and inhomogeneous.
- Necessary to propagate fluctuations explicitly!

- Nonequilibrium chiral fluid dynamics ($N\chi$FD):
 - phase transition model +
 - dissipation and noise +
 - fluid dynamics
Motivation

Two questions in finite, dynamic systems:

- Are nonequilibrium effects strong enough to develop signals of the first order phase transition?
- Do enhanced equilibrium fluctuations at the critical point survive?
The linear sigma model with constituent quarks

\[\mathcal{L} = \overline{q} \left[i \gamma^\mu \partial_\mu - g \left(\sigma + i \gamma_5 \tau \vec{\pi} \right) \right] q + \frac{1}{2} \left(\partial_\mu \sigma \right)^2 + \frac{1}{2} \left(\partial_\mu \vec{\pi} \right)^2 - U(\sigma, \vec{\pi}) \]

\[U(\sigma, \vec{\pi}) = \frac{\lambda^2}{4} \left(\sigma^2 + \vec{\pi}^2 - \nu^2 \right)^2 - h q \sigma - U_0 \]

\(g = 3.3 \): crossover at \(\mu = 0 \)

\(g = 5.5 \): first order pt at \(\mu = 0 \)

The effective potential at $\mu_B = 0$

$$\Omega_{\text{eff}} = -\frac{T}{V} \ln Z_{\text{th}} = -d_q T \int \frac{d^3p}{(2\pi)^3} \ln \left(1 + \exp \left(-\frac{E}{T} \right) \right) + U(\sigma, \vec{\pi})$$

with dynamically generated quark masses $E = \sqrt{p^2 + g^2 \sigma^2 + g^2 \vec{\pi}^2}$

For a qualitative study tune the strength of the phase transition via the coupling g.
Nonequilibrium chiral fluid dynamics - NχFD

- Langevin equation for the sigma field: damping and noise from the interaction with the quarks

$$\partial_\mu \partial^\mu \sigma + \frac{\delta U}{\delta \sigma} + g \rho_s + \eta \partial_t \sigma = \zeta$$

- Fluid dynamic expansion of the quark fluid = heat bath, including energy-momentum exchange

$$\partial_\mu T_{q\mu \nu} = S_\nu = -\partial_\mu T_{\sigma \mu \nu}$$

- Nonequilibrium equation of state

$$\rho = \rho(e, \sigma)$$

⇒ Selfconsistent approach within the two-particle irreducible effective action!

(MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011))
Semiclassical equation of motion for the sigma field

\[\partial_\mu \partial^\mu \sigma + \frac{\delta U}{\delta \sigma} + g \rho_s + \eta \partial_t \sigma = \xi \]

damping term \(\eta \) and noise \(\xi \) for \(k = 0 \)

\[\eta = g^2 \frac{d_\rho}{\pi} \left(1 - 2n_F \left(\frac{m_\sigma}{2} \right) \right) \frac{\left(\frac{m_\sigma^2}{4} - m_q^2 \right)^3}{m_\sigma^2} \]

\[\langle \xi(t)\xi(t') \rangle = \frac{1}{V} \delta(t-t') m_\sigma \eta \coth \left(\frac{m_\sigma}{2T} \right) \]

below \(T_c \) damping by the interaction with the hard pion modes, apply \(\eta = 2.2 / \text{fm} \)

(T. S. Biro and C. Greiner, PRL 79 (1997))
Evolution in a box

- nonexpanding, finite heat bath
- initialize the sigma field in equilibrium at $T > T_c$
- initialize the energy density at a $T_{\text{sys}} < T_c$
- update sigma field on the grid according to the Langevin equation
Equilibration for a heat bath with reheating

Critical point

\(T_c = 139.8 \text{ MeV} \)

- During relaxation of the \(\sigma \)-field the temperature of the heat bath increases.
- Coupled dynamics equilibrate at a given \(T_{eq} \) and \(\sigma_{eq} \).
- Green curves correspond to scenarios with \(T_{eq} \) near \(T_c \).

\(\Rightarrow \) Critical slowing down!

(MN, S. Leupold, M. Bleicher, PLB 711 (2012))
Equilibration for a heat bath with reheating

First order phase transition

\(T_c = 123.3 \text{ MeV} \)

- Strong reheating during relaxation of the \(\sigma \)-field.
- Long (initial) relaxation times for \(T_{\text{sys}} \) close to the phase transition.
- Except for the scenario with \(T_{\text{sys}} = 20 \text{ MeV} \) the heat bath reheats to \(T > T_c \).
- System gets trapped in metastable states.

(MN, S. Leupold, M. Bleicher, PLB 711 (2012))
Fluid dynamic expansion of the heat bath

- very simple initial conditions: almond-shaped initial temperature distribution, sigma field and energy density in equilibrium at $T(x)$
- 3+1d fluid dynamic expansion
- update sigma field on the grid according to the Langevin equation
- very good energy conservation
Reheating and supercooling

- oscillations at the critical point
- supercooling of the system at the first order phase transition
- reheating effect visible at the first order phase transition

Intensity of sigma fluctuations
in single events

\[\frac{dN_\sigma}{d^3 k} = \frac{\left(\omega_k^2 |\sigma_k|^2 + |\partial_t \sigma_k|^2 \right)}{(2\pi)^3 2\omega_k} \]

\[\omega_k = \sqrt{|k|^2 + m_\sigma^2} \]

\[m_\sigma = \sqrt{\frac{\partial^2 V_{\text{eff}}}{\partial \sigma^2} |_{\sigma = \sigma_{\text{eq}}}} \]

Realistic initial conditions

initial conditions from the hybrid UrQMD+hydro approach (profiles from Pb+Pb at $E_{\text{lab}} = 40A$ GeV)

(H. Petersen et al. PRC 78 (2008))
Dynamic domain formation
First order phase transition

Sigma field fluctuations: \(\Delta \sigma = \sqrt{(\sigma - \sigma_{eq})^2} \)

- highly supercooled state at \(t = 4.0 \) fm

(MN, I. Mishustin in preparation)
Dynamic domain formation
First order phase transition

sigma field fluctuations: \(\Delta \sigma = \sqrt{(\sigma - \sigma_{eq})^2} \)

- highly supercooled state at \(t = 4.0 \) fm
- dynamic formation of domains at \(t = 5.6 \) fm

(MN, I. Mishustin in preparation)
Dynamic domain formation
First order phase transition

sigma field fluctuations: \(\Delta \sigma = \sqrt{(\sigma - \sigma_{eq})^2} \)

- highly supercooled state at \(t = 4.0 \) fm
- dynamic formation of domains at \(t = 5.6 \) fm
- dynamic decay of domains at \(t = 7.2 \) fm

This could lead to non-statistical fluctuations in hadron multiplicities.

(MN, I.Mishustin in preparation)
Dynamic correlation length

Critical point

Correlation function: \(G(r) \propto \exp\left(-\frac{r}{\xi}\right) \)

Growth of \(\xi \) up to 1.5 – 2.5 fm in a dynamic model!

Very preliminary results, systematic study is presently carried out!
Dynamic enhancement of event-by-event fluctuations

Critical point

Enhancement of event-by-event fluctuations of the sigma field in a critical point scenario!

Very preliminary results, systematic study is presently carried out!
Summary

- nonequilibrium chiral fluid dynamics including damping and noise
- energy-momentum conservation by the back reaction on the heat bath
- effects of supercooling, reheating, critical slowing down
- dynamic formation and decay of domains at the first order phase transition
- dynamic enhancement of event-by-event-fluctuations of the sigma mode at the critical point
Face diagram of EQCD 2012