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How to study the QCD phase diagram...

.. be brave and solve
Z(T.up) = [ D(A.q.qh)e %o

ab initio and nonperturbatively,

. be strong and collide heavy
ions at ultrarelativistic energies,

. be creative and study effec-
tive models of QCD.
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Critical point

> m2 = 27 -0

» correlation length diverges
¢ = m%, — 00

» universality classes
for QCD: O(4) Ising model in
3d = (0?) o &2

» renormalization group

» critical opalescence

T <T.

= Large event-by-event fluctuations in thermal systems!



First order phase transitions

» two degenerate minima
separated by a barrier

> latent heat
» phase coexistence

» supercooling effects in
nonequilibrium situations

» nucleation
» spinodal decomposition

(.N.Mishustin, PRL 82 (1999); Ph.Chomaz, M.Colonna,

J.Randrup, Physics Reports 389 (2004))

= (Large) fluctuations in single events in nonequilibrium situations!



The critical point in heavy-ion collisions
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The critical point in dynamic systems

long relaxation times near a critical point = critical slowing down
= the system is driven out of equilibrium

Smo(t) = ~Tlmy () (mo (1) — 5

with T(my) = £ (mx&o)?
z=3
(dynamic) critical exponent

= E~15-25fm

-0.2 -0.15 -0.1 -0.05 0.05 0.1
(B. Berdnikov and K. Rajagopal, PRD 61 (2000)); D.T.Son, M.Stephanov, PRD 70 (2004); M.Asakawa, C.Nonaka, Nucl. Phys. A774 (2006))



Higher moments and the kurtosis

Higher moments are more sensitive to the growth of the correlation

length: <(§N)4>/N x (’:4 (M. A. Stephanov, PRL 102 (2009)
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(MN, J.Phys.G 38 (2011))

» Kurtosis is negative at the critical point. (M. A. Stephanov, PRL 107 (2011)

» Negative kurtosis is also given by superposition many particle
distributions, net-baryon number conservation...



Motivation

v

Fluctuations have so far been investigated in static, equilibrated
systems.

However, systems created in heavy-ion collisions are finite in
size and time and inhomogeneous.

Necessary to propagate fluctuations explicitly!
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Nonequilibrium chiral fluid dynamics
(NxFD):

> phase transition model +

> dissipation and noise +

> fluid dynamics




Motivation

Two questions in finite, dynamic systems:

» Are nonequilibrium effects strong enough to develop signals of
the first order phase transition?

» Do enhanced equilibrium fluctuations at the critical point survive?



The linear sigma model with constituent quarks
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The effective potential at ug =0

E .
Qeff:_vlnzth qu/ (1+exp (—T)>+U(¢7,rc)

with dynamically generated quark masses E = +/p2? + g202 + g2 72

1 T T T T T T T
first order phase transition at 7, = 123.27 MeV

critical point at T, = 139.88 MeV - - - -
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-40 -20 0 20 40 60 80 100 120
o/MeV

For a qualitative study tune the strength of the phase transition via the
coupling g.



Nonequilibrium chiral fluid dynamics - NxFD

» Langevin equation for the sigma field: damping and noise from
the interaction with the quarks

ou
00" + 5o T9pst notr =¢

» Fluid dynamic expansion of the quark fluid = heat bath, including
energy-momentum exchange

T =8" =0, T
» Nonequilibrium equation of state
p=p(eo)

Selfconsistent approach within the two-particle irreducible effec-
tive action!

(MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011))



Semiclassical equation of motion for the sigma field

ou
ayaHU'—l-%‘l‘gPS‘FﬂatU':C

damping term # and noise ¢ fork =0
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below T, damping by the interaction with the hard pion modes, apply
n=22/fm

(T. S. Biro and C. Greiner, PRL 79 (1997))
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Evolution in a box

nonexpanding, finite heat bath

initialize the sigma field in equilibrium at T > T;

initialize the energy density ata Tsys < T¢

update sigma field on the grid according to the Langevin equation



Equilibration for a heat bath with reheating

Critical point

relaxation of the ¢ field
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(MN, S. Leupold, M. Bleicher, PLB 711 (2012) )

T, = 139.8 MeV

» During relaxation of the o-field
the temperature of the heat
bath increases.

» Coupled dynamics equilibrate
ata given Teq and oeq.
» Green curves correspond to

scenarios with Teq near Te.
= Critical slowing down!



Equilibration for a heat bath with reheating

First order phase transition

relaxation of the ¢ field
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» Strong reheating during
relaxation of the o-field.

» Long (initial) relaxation times
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» Except for the scenario with
Tsys = 20 MeV the heat bath
reheatsto T > Tg.

» System gets trapped in
metastable states.

(MN, S. Leupold, M. Bleicher, PLB 711 (2012))
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Fluid dynamic expansion of the heat
bath

very simple initial conditions: almond-shaped initial temperature
distribution, sigma field and energy density in equilibrium at T(x)

3+1d fluid dynamic expansion
update sigma field on the grid according to the Langevin equation
very good energy conservation



Reheating and supercooling

relaxation of the ¢ field temperature
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» oscillations at the critical point
» supercooling of the system at the first order phase transition
» reheating effect visible at the first order phase transition

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962



Intensity of sigma fluctuations

in single events

dNo _ (wilow|? + |01k [?)
d3k (27)32wy
wi = \/|K|Z +mZ

My = \/82 Veff/802|U:Ueq

60

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962
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Realistic initial conditions

initial conditions from the hybrid UrQMD-+hydro approach
(profiles from Pb+Pb at E;,;, = 40A GeV)

(H.Petersen et al. PRC 78 (2008))
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Dynamic domain formation

First order phase transition

sigma field fluctuations: Ao = /(0 — 0eq)?

t =4.0 fm

y [fm]

 [fm]

» highly supercooled state at t = 4.0 fm

(MN, 1.Mishustin in preparation)
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Dynamic domain formation

First order phase transition

sigma field fluctuations: Ao = /(0 — 0eq)?

t=4.0 fm t=5.6 fm

-

y [fm]

z [fm]

» highly supercooled state at t = 4.0 fm
» dynamic formation of domains at t = 5.6 fm

(MN, I.Mishustin in preparation)
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Dynamic domain formation

First order phase transition

sigma field fluctuations: Ao = /(¢ — 0eq)?

t =4.0 fm t=5.6 fm

]
{ » 60
t - =" 50
-!-
[

Ao [MeV]

\’ 20

z [fm]

» highly supercooled state at t = 4.0 fm
» dynamic formation of domains at t = 5.6 fm
» dynamic decay of domains at t = 7.2 fm
This could lead to non-statistical fluctuations in hadron multiplicities.

(MN, I.Mishustin in preparation)



Dynamic correlation length

Critical point

Correlation function: G(r) o exp(—r/¢)
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Growth of ¢ up to 1.5 — 2.5 fm in a dynamic model!

Very preliminary results, systematic study is presently carried out!



Dynamic enhancement of event-by-event fluctuations

Critical point
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critical point
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Enhancement of event-by-event fluctuations of the sigma field in a
critical point scenario!

Very preliminary results, systematic study is presently carried out!



Summary

» nonequilibrium chiral fluid dynamics including damping and noise

» energy-momentum conservation by the back reaction on the heat
bath

» effects of supercooling, reheating, critical slowing down

» dynamic formation and decay of domains at the first order phase
transition

» dynamic enhancement of event-by-event-fluctuations of the
sigma mode at the critical point
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Face diagram of EQCD 2012




