The QCD phase diagram in N χ FD

Marlene Nahrgang

SUBATECH, Nantes & FIAS, Frankfurt

Excited QCD 2012, Peniche

$$\mathcal{L}=\overline{q}^{lpha}(i\gamma^{\mu}D_{\mu,lphaeta}-m_{q}\delta_{lphaeta})q^{eta}-rac{1}{4}F^{a}_{\mu
u}F^{\mu
u}_{a}$$

... be brave and solve

$$Z(T, \mu_B) = \int \mathcal{D}(A, q, q^{\dagger}) \mathrm{e}^{-S_{\mathrm{QCD}}^{E}}$$

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultrarelativistic energies,

... be creative and study effective models of QCD.

... be brave and solve

$$Z(T, \mu_B) = \int \mathcal{D}(A, q, q^{\dagger}) \mathrm{e}^{-S_{\mathrm{QCD}}^{E}}$$

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultrarelativistic energies,

... be creative and study effective models of QCD.

... be brave and solve

$$Z(T, \mu_B) = \int \mathcal{D}(A, q, q^{\dagger}) \mathrm{e}^{-S_{\mathrm{QCD}}^{E}}$$

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultrarelativistic energies,

... be creative and study effective models of QCD.

 $\mathcal{L}_{ ext{eff}}$

... be brave and solve

$$Z(T, \mu_B) = \int \mathcal{D}(A, q, q^{\dagger}) \mathrm{e}^{-S_{\mathrm{QCD}}^{E}}$$

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultrarelativistic energies,

... be creative and study effective models of QCD.

Critical point

• correlation length diverges $\xi = \frac{1}{m_{\sigma}} \rightarrow \infty$

- universality classes
 for QCD: O(4) Ising model in
 3d ⇒ ⟨σ²⟩ ∝ ξ²
- renormalization group
- critical opalescence

 \Rightarrow Large event-by-event fluctuations in thermal systems!

First order phase transitions

- two degenerate minima separated by a barrier
- latent heat
- phase coexistence
- supercooling effects in nonequilibrium situations
- nucleation
- spinodal decomposition
 (I.N.Mishustin, PRL 82 (1999); Ph.Chomaz, M.Colonna, J.Randrup, Physics Reports 389 (2004))

 \Rightarrow (Large) fluctuations in single events in nonequilibrium situations!

The critical point in heavy-ion collisions

$$\langle (\Delta \sigma)^2 \rangle = \frac{T}{V} \xi^2$$

assuming a coupling of the order parameter to pions $g\sigma\pi\pi$ and protons $G\sigma\bar{p}p$

$$\frac{\langle (\delta N)^2 \rangle}{N} \propto \xi^2 \propto \langle (\Delta \sigma)^2 \rangle$$

(M. A. Stephanov, K. Rajagopal and E. V. Shuryak, PRL 81 (1998), PRD 60 (1999))

The critical point in dynamic systems

long relaxation times near a critical point \Rightarrow critical slowing down \Rightarrow the system is driven out of equilibrium

$$\frac{d}{dt}m_{\sigma}(t) = -\Gamma[m_{\sigma}(t)](m_{\sigma}(t) - \frac{1}{\xi_{eq}(t)})$$
with $\Gamma(m_{\sigma}) = \frac{A}{\xi_0}(m_{\sigma}\xi_0)^z$
 $z = 3$
(dynamic) critical exponent
$$\Rightarrow \xi \sim 1.5 - 2.5 \text{ fm}$$

(B. Berdnikov and K. Rajagopal, PRD 61 (2000)); D.T.Son, M.Stephanov, PRD 70 (2004); M.Asakawa, C.Nonaka, Nucl. Phys. A774 (2006))

Higher moments and the kurtosis

Higher moments are more sensitive to the growth of the correlation length: $\langle (\delta N)^4 \rangle / N \propto \xi^4$ (M. A. Stephanov, PRL 102 (2009)

- Kurtosis is negative at the critical point. (M. A. Stephanov, PRL 107 (2011)
- Negative kurtosis is also given by superposition many particle distributions, net-baryon number conservation...

Motivation

- Fluctuations have so far been investigated in static, equilibrated systems.
- However, systems created in heavy-ion collisions are finite in size and time and inhomogeneous.
- Necessary to propagate fluctuations explicitly!
- Nonequilibrium chiral fluid dynamics (NχFD):
 - phase transition model +
 - dissipation and noise +
 - fluid dynamics

Motivation

Two questions in finite, dynamic systems:

- Are nonequilibrium effects strong enough to develop signals of the first order phase transition?
- Do enhanced equilibrium fluctuations at the critical point survive?

The linear sigma model with constituent quarks

$$\mathcal{L} = \overline{q} \left[i\gamma^{\mu}\partial_{\mu} - g \left(\sigma + i\gamma_{5}\tau\vec{\pi}\right) \right] q + \frac{1}{2} \left(\partial_{\mu}\sigma\right)^{2} + \frac{1}{2} \left(\partial_{\mu}\vec{\pi}\right)^{2} - U\left(\sigma,\vec{\pi}\right)$$
$$U\left(\sigma,\vec{\pi}\right) = \frac{\lambda^{2}}{4} \left(\sigma^{2} + \vec{\pi}^{2} - \nu^{2}\right)^{2} - h_{q}\sigma - U_{0}$$

g = 3.3: crossover at $\mu =$ 0

g = 5.5: first order pt at $\mu = 0$

(O. Scavenius, A. Mocsy, I.N. Mishustin, D.H. Rischke, PRC 64 (2001); C.E. Aguiar, E.S. Fraga, T. Kodama, J.Phys.G 32 (2006))

The effective potential at $\mu_B = 0$

$$\Omega_{\rm eff} = -\frac{T}{V} \ln Z_{\rm th} = -d_q T \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \ln \left(1 + \exp\left(-\frac{E}{T}\right)\right) + U(\sigma, \vec{\pi})$$

with dynamically generated quark masses $E = \sqrt{p^2 + g^2 \sigma^2 + g^2 \vec{\pi}^2}$

For a qualitative study tune the strength of the phase transition via the coupling g.

Nonequilibrium chiral fluid dynamics - N χ FD

Langevin equation for the sigma field: damping and noise from the interaction with the quarks

$$\partial_{\mu}\partial^{\mu}\sigma + \frac{\delta U}{\delta\sigma} + g\rho_{s} + \eta\partial_{t}\sigma = \xi$$

Fluid dynamic expansion of the quark fluid = heat bath, including energy-momentum exchange

$$\partial_{\mu}T^{\mu\nu}_{q} = S^{\nu} = -\partial_{\mu}T^{\mu\nu}_{\sigma}$$

Nonequilibrium equation of state

$$p = p(e, \sigma)$$

Selfconsistent approach within the two-particle irreducible effective action!

(MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011))

Semiclassical equation of motion for the sigma field

$$\partial_{\mu}\partial^{\mu}\sigma + \frac{\delta U}{\delta\sigma} + g\rho_{s} + \eta\partial_{t}\sigma = \xi$$

damping term η and noise ξ for $\mathbf{k} = \mathbf{0}$

$$\eta = g^{2} \frac{d_{q}}{\pi} \left(1 - 2n_{\mathrm{F}} \left(\frac{m_{\sigma}}{2} \right) \right) \frac{\left(\frac{m_{\sigma}^{2}}{4} - m_{q}^{2} \right)^{\frac{3}{2}}}{m_{\sigma}^{2}} \left(\frac{m_{\sigma}^{2}}{\frac{1}{2}} - \frac{m_{q}^{2}}{\frac{1}{2}} \right)^{\frac{3}{2}} \left(\frac{m_{\sigma}^{2}}{\frac{1}{2}} - \frac{m_{\sigma}^{2}}{\frac{1}{2}} \right)^{\frac{1}{2}} \left(\frac{m_{\sigma}^{2}}{\frac{1}{2}} - \frac{m_{q}^{2}}{\frac{1}{2}} \right)^{\frac{3}{2}} \left(\frac{m_{\sigma}^{2}}{\frac{1}{2}} - \frac{m_{\sigma}^{2}}{\frac{1}{2}} \right)^{\frac{3}{2}} \left(\frac{m_{\sigma}^{2}}{\frac{1}{2}} - \frac{m_{\sigma}^{2}}{\frac{1}{2}} - \frac{m_{\sigma}^{2}}{\frac{1}{2}} \right)^{\frac{3}{2}} \right)^{\frac{1}{2}} \left(\frac{m_{\sigma}^{2}}{\frac{1}{2}} - \frac{m_{\sigma}^{2}}{\frac{1}{2}} - \frac{m_{\sigma}^{2}}{\frac{1}{2}} - \frac{m_{\sigma}^{2}}{\frac{1}{2}} - \frac{m_{\sigma}^{2}}{\frac{1}{2}} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \left(\frac{m_{\sigma}^{2}}{\frac{1}{2}} - \frac{m_{\sigma}^{2}}{\frac{1}{2$$

below T_c damping by the interaction with the hard pion modes, apply $\eta = 2.2/\text{fm}$

(T. S. Biro and C. Greiner, PRL 79 (1997))

Evolution in a box

- nonexpanding, finite heat bath
- initialize the sigma field in equilibrium at $T > T_c$
- \blacktriangleright initialize the energy density at a $T_{\rm sys} < T_c$
- update sigma field on the grid according to the Langevin equation

Equilibration for a heat bath with reheating Critical point

$T_c = 139.8 \text{ MeV}$

- During relaxation of the *σ*-field the temperature of the heat bath increases.
- Coupled dynamics equilibrate at a given *T*_{eq} and *σ*_{eq}.
- Green curves correspond to scenarios with *T*_{eq} near *T_c*.
 ⇒ Critical slowing down!

Equilibration for a heat bath with reheating

First order phase transition

(MN, S. Leupold, M. Bleicher, PLB 711 (2012))

 $T_c = 123.3 \text{ MeV}$

- Strong reheating during relaxation of the *σ*-field.
- Long (initial) relaxation times for T_{sys} close to the phase transition.
- Except for the scenario with $T_{sys} = 20$ MeV the heat bath reheats to $T > T_c$.
- System gets trapped in metastable states.

Fluid dynamic expansion of the heat bath

- very simple initial conditions: almond-shaped initial temperature distribution, sigma field and energy density in equilibrium at T(x)
- 3+1d fluid dynamic expansion
- update sigma field on the grid according to the Langevin equation
- very good energy conservation

Reheating and supercooling

- oscillations at the critical point
- supercooling of the system at the first order phase transition
- reheating effect visible at the first order phase transition

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962

Intensity of sigma fluctuations

in single events

16

14

16

Realistic initial conditions

initial conditions from the hybrid UrQMD+hydro approach (profiles from Pb+Pb at $E_{lab} = 40A$ GeV)

(H.Petersen et al. PRC 78 (2008))

Dynamic domain formation

First order phase transition

sigma field fluctuations:
$$\Delta \sigma = \sqrt{(\sigma - \sigma_{eq})^2}$$

• highly supercooled state at t = 4.0 fm

(MN, I.Mishustin in preparation)

Dynamic domain formation

First order phase transition

sigma field fluctuations:
$$\Delta \sigma = \sqrt{(\sigma - \sigma_{eq})^2}$$

- highly supercooled state at t = 4.0 fm
- dynamic formation of domains at t = 5.6 fm

(MN, I.Mishustin in preparation)

Dynamic domain formation

First order phase transition

sigma field fluctuations:
$$\Delta \sigma = \sqrt{(\sigma - \sigma_{eq})^2}$$

- highly supercooled state at t = 4.0 fm
- dynamic formation of domains at t = 5.6 fm
- dynamic decay of domains at t = 7.2 fm

This could lead to non-statistical fluctuations in hadron multiplicities.

Dynamic correlation length

Critical point

Correlation function: $G(r) \propto \exp(-r/\xi)$

Growth of ξ up to 1.5 – 2.5 fm in a dynamic model!

Very preliminary results, systematic study is presently carried out!

Dynamic enhancement of event-by-event fluctuations Critical point

Enhancement of event-by-event fluctuations of the sigma field in a critical point scenario!

Very preliminary results, systematic study is presently carried out!

- nonequilibrium chiral fluid dynamics including damping and noise
- energy-momentum conservation by the back reaction on the heat bath
- effects of supercooling, reheating, critical slowing down
- dynamic formation and decay of domains at the first order phase transition
- dynamic enhancement of event-by-event-fluctuations of the sigma mode at the critical point

Face diagram of EQCD 2012

