

and

atter

eep-

Ð

at

ð

International Workshop o

Probing Hard Diffraction at CMS

A.Vilela Pereira, on behalf of the CMS collaboration INFN Torino

Outline

CMS Experiment at LHC, CERN Data recorded: Sat Apr 24 05:25:36 2010 CEST Run/Event: 133874 / 22902855 Lumi section: 317

CMS detector & forward instrumentation Probing hard diffraction I: Diffractive dijet production Probing hard diffraction II: W/Z events with (pseudo-)rapidity gaps

The CMS detector

The CMS detector

The CMS detector

Forward detectors @ CMS

Outline

CMS Experiment at LHC, CERN Data recorded: Sat Apr 24 05:25:36 2010 CEST Run/Event: 133874 / 22902855 Lumi section: 317

CMS detector & forward instrumentation

Probing hard diffraction I: Diffractive dijet production Probing hard diffraction II: W/Z events with (pseudo-)rapidity gaps

Probing hard diffraction

Diffractive events where a hard scale is present: high- p_T jets, W/Z's, ...

Extension of HERA/Tevatron studies on diffractive PDF's (dPDF), rapidity gap survival probability (<S²>) & exclusive processes

Set the framework for future searches with proton tagging at high(er) luminosity

Diffractive dijet candidate

DIS2012 26 - 30 March, Hard Diffraction at CMS, A.Vilela Pereira

Event selection

Low-p_T trigger at 6 GeV (uncorrected) High quality vertex + beam background and noise rejection

At least two jets with p_T > 20 GeV and within -4.4 < η < 4.4

 $\eta_{max(min)}$: most forward (backward) particle in the detector

CMS PAS FWD-10-004

Event selection

Low-p_T trigger at 6 GeV (uncorrected)

High quality vertex + beam background and noise rejection

At least two jets with p_T > 20 GeV and within -4.4 < η < 4.4

 $\eta_{max(min)}$: most forward (backward) particle in the detector

DIS2012 26 - 30 March, Hard Diffraction at CMS, A.Vilela Pereira

РОМРУ

HIA6

ξ definition

DIS2012 26 - 30 March, Hard Diffraction at CMS, A.Vilela Pereira

12

Event distributions

Distributions are obtained as a function of ξ^+ and ξ^- , and averaged

A combination of PYTHIA6 (Tune Z2) and POMPYT is used to describe the data, where their relative contributions are obtained from a fit to the ξ distribution

Note that different MC tunes would imply considerable variations in relative yields

Suppression of events with high ξ values after $\eta_{max} < 3$ (or $\eta_{min} > -3$) selection, while low- ξ region is mostly unaffected

Results in three ξ bins: (0.0003,0.002); (0.002,0.0045); (0.0045,0.01)

Event distributions

Distributions are obtained as a function of ξ^+ and ξ^- , and averaged

A combination of PYTHIA6 (Tune Z2) and POMPYT is used to describe the data, where their relative contributions are obtained from a fit to the ξ distribution

Note that different MC tunes would imply considerable variations in relative yields

Suppression of events with high ξ values after $\eta_{max} < 3$ (or $\eta_{min} > -3$) selection, while low- ξ region is mostly unaffected

Results in three ξ bins: (0.0003,0.002); (0.002,0.0045); (0.0045,0.01)

Dijet cross sections

Excess of events in low-ξ region with respect to non-diffractive MC's PYTHIA6 and PYTHIA8

 $N^i(\tilde{\xi}_{
m Gen})$

POMPYT and POMWIG (LO) diffractive MC's as well as the NLO calculation from POWHEG, using diffractive PDFs, are a factor ~5 above the data in lowest ξ bin

PYTHIA8 diffractive cross sections are considerably lower due to different pomeron flux parametrisation

DIS2012 26 - 30 March, Hard Diffraction at CMS, A.Vilela Pereira

Normalisation discrepancies give upper limit predictions (including proton dissociation) to rapidity gap survival probability:

$$S_{\text{data/MC}}^2 = 0.21 \pm 0.07 \text{ (LO MC)}$$

 $S_{\text{data/MC}}^2 = 0.14 \pm 0.05 \text{ (NLO MC)}$

CMS PAS FWD-10-004

Outline

CMS Experiment at LHC, CERN Data recorded: Sat Apr 24 05:25:36 2010 CEST Run/Event: 133874 / 22902855 Jumi section: 317

CMS detector & forward instrumentation

Probing hard diffraction I: Diffractive dijet production

Probing hard diffraction II:W/Z events with (pseudo-)rapidity gaps

W/Z events with pseudorapidity gaps

W/Z events with an η -gap

+

 $dN/d \Sigma E_{HF}$

Diffractive component in W/Z data set

Events with low energy deposits at the forward calorimeters

Monte Carlo generators cannot describe the data (extensive studies on overall energy flow and correlations in <u>supporting</u> <u>document</u>)

Fraction of W/Z events with a forward gap: W \rightarrow IV: 1.46 \pm 0.09(stat.) \pm 0.38(syst.) % Z \rightarrow II: 1.60 \pm 0.25(stat.) \pm 0.42(syst.) %

<u>CMS PAS FWD-10-008</u> *Eur. Phys. J. C (2012) 72:1839*

DIS2012 26 - 30 March, Hard Diffraction at CMS, A.Vilela Pereira

e.µ

$W \rightarrow ev(\mu v)$ gap distributions

DIS2012 26 - 30 March, Hard Diffraction at CMS, A.Vilela Pereira

ñ

Summary

First measurements of hard diffraction at the LHC, associated with high-pT jets and W/Z bosons

The differential dijet cross section has been measured, as a function of a variable (ξ) that approximates the momentum loss of protons in diffractive events

Diffractive dijet events dominate the low- ξ region. Comparing the measured cross section to diffractive MC predictions based on dPDFs from HERA, an estimate of the survival probability was obtained

A large asymmetry is observed with the charged lepton in the opposite or same hemisphere as the pseudorapidity gap signature, in a W/Z data set, consistent with diffractive W/Z production

These measurements give constraints on hard-diffractive processes at the LHC, diffractive PDFs, and especially estimates of the survival probability. They form a benchmark for future searches in exclusive & diffractive channels with near beam proton detectors at the LHC

Extra slides

Forward physics results at CMS

Low-x QCD & pdf's, diffraction, γ interactions, underlying event & MPI, etc.

Results on these subjects from the CMS collaboration, mostly with the data set collected during 2010

CMS PAS FWD-11-001: Measurement of the inelastic pp cross section at 7 TeV CMS PAS FWD-10-005: Measurement of the exclusive two-photon production of muon pairs CMS PAS FWD-10-001: Observation of diffraction at 900 and 2360 GeV CMS PAS FWD-10-007: Observation of diffraction at 7 TeV CMS PAS FWD-10-008: Forward Energy Flow and Central Track Multiplicities in W and Z boson Events at 7 TeV (*Eur. Phys. J. C (2012) 72:1839*) CMS PAS FWD-10-004: Evidence for hard-diffractive dijet production at 7 TeV CMS PAS FWD-11-004: Search for central exclusive gamma pair production and observation of central exclusive electron pair production at 7 TeV CMS PAS FWD-10-011: Forward energy flow CMS PAS FWD-10-003: Measurement of forward jets at 7 TeV CMS PAS FWD-10-006: Cross section measurement for simultaneous production of a central and a forward jet at 7 TeV

Outline

CMS Experiment at LHC, CERN Data recorded: Sat Apr 24 05:25:36 2010 CEST Run/Event: 133874 / 22902855 Lumi section: 317

CMS detector & forward instrumentation

Probing hard diffraction I: Diffractive dijet production

Probing hard diffraction II: W/Z events with (pseudo-)rapidity gaps

Diffractive dijet candidate

DIS2012 26 - 30 March, Hard Diffraction at CMS, A.Vilela Pereira

Diffractive dijet candidate

CMS Experiment at LHC, CERN Data recorded: Sat Apr 24 05:25:36 2010 CEST Run/Event: 133874 / 22902855 Lumi section: 317

ξ definition

Event distributions

Systematic uncertainties

Largest contribution from Jet Energy Scale uncertainty

Average systematic error around 30%

$\widetilde{\xi}$ bin	$\Delta \sigma_{jj} / \Delta \tilde{\xi} (\mu b)$
$0.0003 < \widetilde{\xi} < 0.002$	$5.0 \pm 0.9(\text{stat.})^{+1.5}_{-1.4}(\text{syst.})$
$0.002 < \widetilde{\xi} < 0.0045$	$8.2 \pm 0.9(\text{stat.})^{+2.3}_{-2.3}(\text{syst.})$
$0.0045 < \widetilde{\xi} < 0.01$	$13.5 \pm 0.9(\text{stat.})^{+4.7}_{-3.1}(\text{syst.})$

Uncertainty source	$0.0003 < \widetilde{\xi} < 0.002$	$0.002 < \widetilde{\xi} < 0.004$	$0.0045 < \widetilde{\xi} < 0.01$
1. Jet energy scale	(+26/-19)%	(+21/-20)%	(+28/-16)%
2. Jet energy resolution	(+5/-3)%	(+2/-1)%	(+3/-1)%
3. Calorimeter energy scale	(+7/-14)%	(+14/-8)%	(+12/-10)%
4. MC uncertainty	(+5/-6)%	(+3/-14)%	(+3/-3)%
5. HF threshold	(+0/-6)%	(+2/-0)%	(+2/-0)%
6. Tracks p_T threshold	(+0/-1)%	(+1/-0)%	(+0/-2)%
7. One vertex selection	(+6/-0)%	(+0/-1)%	(+1/-0)%
8. Calorimeter jets	(+0/-4)%	(+0/-4)%	(+2/-4)%
9. $\widetilde{\xi^+}$, $\widetilde{\xi^-}$ difference	$\pm 8\%$	$\pm 8\%$	±11%
10. η_{max} (η_{min}) cut	(+0/-0)%	(+3/-0)%	(+9/-0)%
11. Trigger efficiency	±3%	$\pm 3\%$	±3%
12. Luminosity	$\pm 4\%$	$\pm 4\%$	$\pm 4\%$

Outline

CMS Experiment at LHC, CERN Data recorded: Sat Apr 24 05:25:36 2010 CEST Run/Event: 133874 / 22902855 Jumi section: 317

CMS detector & forward instrumentation

Probing hard diffraction I: Diffractive dijet production

Probing hard diffraction II:W/Z events with (pseudo-)rapidity gaps

Underlying event in hard interactions

DIS2012 26 - 30 March, Hard Diffraction at CMS, A.Vilela Pereira

DIS2012 26 - 30 March, Hard Diffraction at CMS, A.Vilela Pereira

Central vs Forward energy flow

CMS PAS FWD-10-008

DIS2012 26 - 30 March, Hard Diffraction at CMS, A.Vilela Pereira

Meaning of E ± p_z

• $\Sigma(E \pm p_z)$ runs over all calo towers

• Measure for the momentum of the Pomeron = momentum loss of the proton

Momentum and energy conservation: E(Pomeron) + E(proton I) = E(X) $p_z(Pomeron) + p_z(proton I) = p_z(X)$

Recall: in SD events proton loses almost none of its initial momentum.

If proton 1 moves in positive z direction: E(proton 1) - p_z (proton 1) \approx 0 (and proton 2, and Pomeron, move in the negative z direction)

 $\begin{array}{l} \mbox{Hence:} \\ \mbox{E(Pomeron)} &- p_z(\mbox{Pomeron}) \approx 2 \mbox{E(Pomeron)} \approx \mbox{E(X)} - p_z(\mbox{X}) \\ \mbox{i.e.} \ \mbox{\xi} = 2 \mbox{E(Pomeron)} / \sqrt{s} \approx (\mbox{E(X)} - p_z(\mbox{X})) / \sqrt{s} \end{array}$

Conversely, if proton 1 moves in the negative z direction (and proton 2, and Pomeron, in the positive z direction), E(proton 1) + p_z (proton 1) \approx 0, hence:

 $E(Pomeron) + p_z(Pomeron) \approx 2E(Pomeron) \approx E(X) + p_z(X)$

i.e. $\xi = 2E(Pomeron)/\sqrt{s} \approx (E(X) + p_z(X))/\sqrt{s}$