

Central Exclusive Production in CMS

Wenbo Li

Peking University (for the CMS Collaboration)

XX International Workshop on Deep-Inelastic Scattering and Related Subjects, Bonn 2012

Outline

- > Introduction
- > The CMS Detector
- Exclusive dipohoton and dielectron production
 - > Event selection
 - > Result
- > Exclusive dimuon production
 - > Event selection
 - Signal extraction
 - > Result
- > Summary

Central Exclusive Production

Central exclusive production:

$$pp \rightarrow p + X + p$$

- Both protons stay intact after the interaction
- > True rapidity gap and X is a simple fully measured system
- Exclusive: no other particles produced
- Cleanest, simplest and "NEW" inelastic pp collision
- \triangleright Three distinct physics processes involved: $\gamma\gamma$, γ IP and IPIP interactions

 $\gamma \gamma$ interaction : $X = e^+e^-, \mu^+\mu^-$

 γ IP fusion : $X = Y, Z^0$

IPIP exchange : $X = \gamma \gamma$, jj, H

Physics Motivation (IPIP—γγ)

- ➤ Double pomeron exchange:

 - ightharpoonup gg fusion through a quark loop to produce the central system ightharpoonup with a soft low- Q^2 screening gluon to cancel the exchanged color ightharpoonup Sudakov factor (no partons emitted by the fusing gluons)

 - > Soft-survival probability (no additional inelastic pp scattering)
- ➤ Offers an ideal way to study diffractive and double pomeron exchange
 - ightharpoonup Low-x gluon density $(\sigma \sim (xg)^4)$
 - Constraints on calculation of Sudakov factor and soft-survival probability
- > Provide excellent test of the theoretical predictions of exclusive Higgs production
 - Theoretical predictions for H production: cover a range of over 2 orders of magnitude Only the calculable matrix elements (red box) are different for H and $\gamma\gamma$ cases

 - : $\sigma_H(M)$ should be well determined theoretically

Physics Motivation $(\gamma\gamma \rightarrow l^+l^-)$

Exclusive production:

- ➤ Basically a QED process, cross section known with high accuracy at theoretical level (<1%).
- Provides a control sample for other exclusive processes
- Potentially interesting for future integrated luminosity measurement (provided that semi-exclusive production is well understood or well suppressed)

Semi-exclusive production:

- ➤ One or two protons are excited and diffractively dissociated.
- Much less theoretically determined
- Suppression of semi-exclusive events depends on the performance of the forward detectors (in CMS, this production will contribute more than half of the candidates)

The CMS Detector

Sub-detectors used to define exclusivity condition:

- \triangleright Diphoton and dielectron analyses: Tracker + Calo (red box) ($|\eta|$ <5.2)
- \triangleright Dimuon analysis: Tracker only (blue box) ($|\eta|$ <2.5)

Exclusive γγ production & Exclusive e⁺e⁻ production

FWD-11-004

Event Selection

- ➤ Any other non-exclusive interaction would spoil the exclusivity condition
- ➤ Only 2010 data sample used (low pile-up) (36pb⁻¹)
- \triangleright Trigger: 2 EM showers with $E_T > 5 GeV$
- ➤ Photon (electron) selection:
 - \triangleright exactly two photons (electrons) with E_T > 5.5GeV and $|\eta|$ < 2.5
 - both pass identification cuts (dedicated for this analysis)
- ➤ Cosmic ray rejection criteria:
 - > EM timing of the two photons (electrons)
 - > $|t_1| < 2ns$ and $|t_2| < 2ns$
 - $> |t_1 t_2| < 2ns$
 - $\geq \Delta \phi > 2.5 \text{ rad}$
 - ➤ No segments in the DT and CSC
- Exclusivity selection criteria (overriding part):
 - \triangleright No additional tracks ($|\eta| < 2.5$)
 - No additional towers above noise thresholds in EB, EE, HB, HE and HF ($|\eta| < 5.2$)

Additional: not associated to the two central photons (electrons)

Noise threshold: determined using unpaired events and zerobias events

Exclusivity efficiency: 14.5%

Result

Number of events remaining after each selection:

exclusive diphoton analysis		exclusive dielectron analysis	
selection criterion	events remaining	selection criterion	events remaining
Trigger	3 023 496	Trigger	3 023 496
Photon reconstruction	1 683 526	Electron reconstruction	132 271
Photon identification	40 692	Electron identification	2 648
Cosmic ray rejection	32 775	Cosmic ray rejection	2 023
Exclusivity requirement	0	Exclusivity requirement	17

Number of background events:

exclusive $\gamma\gamma$ production		exclusive e ⁺ e ⁻ production	
Background	Events	Background	Events
exclusive e ⁺ e ⁻	0.11 ± 0.03	exclusive Y(1S,2S,3S) \rightarrow e ⁺ e ⁻	negligible
cosmic ray	negligible	cosmic ray	0.04 ± 0.01
non-exclusive	1.68 ± 0.40	non-exclusive	0.80 ± 0.28
exclusive $\pi^0\pi^0$ and $\eta\eta$	negligible	exclusive $\pi^+\pi^-$	negligible
Total	1.79 ± 0.40	Total	0.84 ± 0.28

Result $(\gamma\gamma)$

- > 95% confidence level upper limit: $\sigma_{\text{exclusive }\gamma\gamma}^{E_{\text{T}}(\gamma)>5.5\,\text{GeV},\,|\eta(\gamma)|<2.5}<1.30~\text{pb}$
- This upper limit is actually on the cross section for the sum of
 - > exclusive (el-el) production
 - > semi-exclusive (inel-el and inel-inel) production with no particles from the proton dissociation having $|\eta| < 5.2$. (less controlled theoretically) (difficult to calculate its contribution precisely) (but is expected to be of similar magnitude)

Theoretical predictions: exclusive (el-el) only

Difference between LO and NLO results reflect mostly the difference of low-*x* gluon density.

Error bar shows the uncertainties coming from:

cross section of gg→γγ Sudakov factor Soft-survival probability

Predictions would be higher by a factor of ~2 if contribution from semi-exclusive included.

Result (e⁺e⁻)

Number of candidates expected:

Process	\mathcal{L}	σ	ε	nEvents
el-el	$36\pm1.4{\rm pb}^{-1}$	3.74±0.04 pb	0.0488 ± 0.0056	6.57 ± 0.07 (theo.) ±0.80 (syst.)
inel-el	$36\pm1.4{\rm pb}^{-1}$	3.34±0.67 pb ×2	0.0348 ± 0.0035	8.37 ± 1.68 (theo.) ±0.90 (syst.)
inel-inel	$36\pm1.4{\rm pb}^{-1}$	3.52±0.70 pb	0.0119 ± 0.0011	1.51 ± 0.30 (theo.) ±0.15 (syst.)
Total				16.5±1.7 (theo.)±1.2 (syst.)

- \triangleright 17 exclusive e⁺e⁻ events on a background of 0.84 \pm 0.28 events are observed.
- \triangleright The theoretical prediction is 16.5 \pm 2.1 events.
- ➤ Observation in good agreement with QED prediction (LPAIR generator).
- The kinematic distributions are in good agreement with simulation (next slide)
- ➤ Validate the technique used in this analysis, especially the exclusivity selection.
- \triangleright Give confidence to the exclusive $\gamma\gamma$ result.

Result (e⁺e⁻)

Display of one exclusive event

Exclusive $\mu^+\mu^-$ production

FWD-10-005

Event Selection

- ➤ Full 2010 data sample used (low pile-up) (40pb⁻¹)
- ➤ Both events with and without pileup are used (exclusivity in tracker only)
- ➤ Unlike dielectron analysis, only exclusive (el-el) events are considered as signal
- ightharpoonup Trigger: 2 muons with $p_T > 3 \text{GeV}$
- ➤ Muon selection:
 - > Two muons with $p_T > 4GeV$ and $|\eta| < 2.1$ > Both pass tight identification cuts

 - > Coming from the same primary vertex
- ➤ Muon pair kenimatics:

 - \rightarrow m(µµ) > 11.5 GeV (be safe from Y(1S,2S,3S) photoproduction)
 - \geq 3D opening angle $> 0.95\pi$ (reject cosmic ray events)
- Exclusivity selection criteria (vertex exclusivity only):
 - > no extra tracks from the dimuon primary vertex
 - > no other tracks within 2mm of the dimuon vertex
- Exclusivity efficiency: 92.3% much higher than the case using ideal exclusivity requirements (Tracker + Calo) (15%)

Signal Extraction

- ➤ After all selections, 148 events remain (~50% expected to be from proton dissociation)
- \triangleright Signal (el-el) is extracted with a binned maximum likelihood fit to the $p_T(\mu\mu)$ distribution with 3 free parameters:
 - Signal yield
 - Single proton dissociation yield
 - Correction to the exponential slope of single proton dissociation
- ➤ Double proton dissociation and Drell-Yan normalization are fixed from MC, and varied as systematic uncertainties

For $p_T(\mu) > 4$ GeV, $|\eta(\mu)| < 2.1$ and $m(\mu\mu) > 11.5$ GeV, the measured cross section and the ratio to the LPAIR prediction are:

$$\sigma = 3.38^{+0.58}_{-0.55}$$
 (stat.) ± 0.16 (syst.) ± 0.14 (lumi.) pb

$$R = 0.83^{+0.14}_{-0.13}$$
 (stat.) ± 0.04 (syst.)

Kinematic distributions

Conclusion

- First search for exclusive diphoton production at 7TeV pp collisions is performed.
- ➤ No diphoton candidate survived all the selection criteria.
- An upper limit on the cross section is set at 1.30 pb with 95% confidence level.
- > Provides some constraint on the theoretical calculation.
- ▶ 17 dielectron candidates on top of a background of 0.84 events are observed from both exclusive and semi-exclusive dielectron production while the predicted number is 16.5 ± 2.1 .
- ➤ Both the number of candidates and the kinematic distributions are in good agreement with QED predictions evaluated from LPAIR generator.
- For $p_T(\mu) > 4$ GeV, $|\eta(\mu)| < 2.1$ and $m(\mu\mu) > 11.5$ GeV, a cross section of exclusive dimuon production is measured:

$$\sigma = 3.38^{+0.58}_{-0.55} \, (\mathrm{stat.}) \pm 0.16 \, (\mathrm{syst.}) \pm 0.14 \, (\mathrm{lumi.}) \, \mathrm{pb}$$

Thank you!

$$\varepsilon_{\rm exc}(\mathcal{L}_{\rm bunch}) = \frac{N_{\rm zerobias}^{\rm exc}(\mathcal{L}_{\rm bunch})}{N_{\rm zerobias}(\mathcal{L}_{\rm bunch})} \approx e^{-\overline{n}} = e^{-\mathcal{L}_{\rm bunch} \cdot \sigma_{\rm inelastic} / f}$$

$$\varepsilon_{\rm exc} = \frac{\int \frac{\mathrm{d}N_{\rm zerobias}}{\mathrm{d}\mathcal{L}_{\rm bunch}} \cdot \mathcal{L}_{\rm bunch} \cdot \varepsilon_{\rm exc}(\mathcal{L}_{\rm bunch}) \cdot \mathrm{d}\mathcal{L}_{\rm bunch}}{\int \frac{\mathrm{d}N_{\rm zerobias}}{\mathrm{d}\mathcal{L}_{\rm bunch}} \cdot \mathcal{L}_{\rm bunch} \cdot \mathrm{d}\mathcal{L}_{\rm bunch}} = 0.145 \pm 0.008$$

Figure 6: 1 and 2 sigma contours in the plane of fitted parameters for the p dissociation yield vs slope (left), slope vs. signal yield ratio (center), and signal yield ratio vs. p dissociation yield ratio (right).

Selection	N_{El-El}	$N_{Inel-El}$
All selection criteria applied	$0.83^{+0.14}_{-0.13}$	$0.73^{+0.16}_{-0.14}$
No $ \Delta p_T $	$0.82^{+0.13}_{-0.13}$	$0.63^{+0.11}_{-0.10}$
No $ \Delta p_T $ or $1 - \Delta \phi/\pi $	$0.81^{+0.13}_{-0.13}$	$0.45^{+0.08}_{-0.07}$

Table 2: Best fit values of N_{El-El} and $N_{Inel-El}$ for the nominal selection, and with the requirements on $|\Delta p_T|$ and $1 - |\Delta \phi/\pi|$ removed.

Selection	Variation from nominal yield
track veto size	3.6%
track quality	2.5%
Drell-Yan background	0.4%
double p -dissociation background	0.9%
Crossing-angle	1.0%
Tracking efficiency	0.1%
Vertexing efficiency	0.1%
Momentum scale	0.1%
Efficiency correlations in J/ψ control sample	0.7%
Muon and trigger efficiency statistical error	0.8%
Total	4.8%

Table 3: Relative systematic uncertainties.