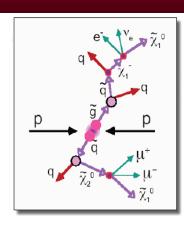
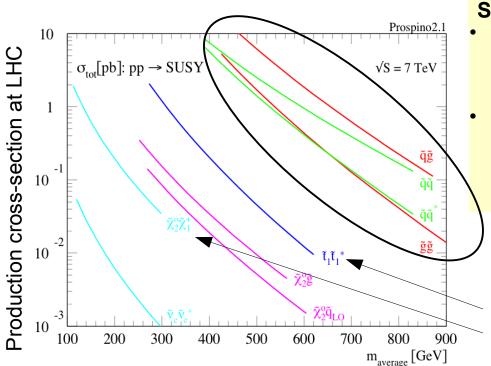
Searches for strong R-parity conserving SUSY production at the LHC with the ATLAS detector

F. Legger

(Ludwig-Maximilians University, Munich)


On behalf of the ATLAS Collaboration



SUSY searches in ATLAS

Focus on general R-parity conserving SUSY models:

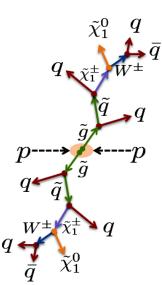
- LSP is stable → large missing transverse energy (E_T miss)
- Sparticles produced in pairs → cascade decays: high pt leptons and/or jets
- Look for an excess of events with respect to Standard Model (SM) predictions
- Main SM backgrounds: QCD, W/Z+jets, tt

Strong production: This talk

- squark-squark production (heavy gluinos):
 - final states with 2 or more jets, not many leptons → 0-lepton analysis
- gluino-gluino production (heavy squarks):
 - long decay chains, many jets and (possibly) leptons. → 0-lepton+multijet and 1-lepton analyses.

R-parity violating models: talk by Carsten Meyer

Direct stop/sbottom: talk by Carlos


Alberto Chavez Barajas

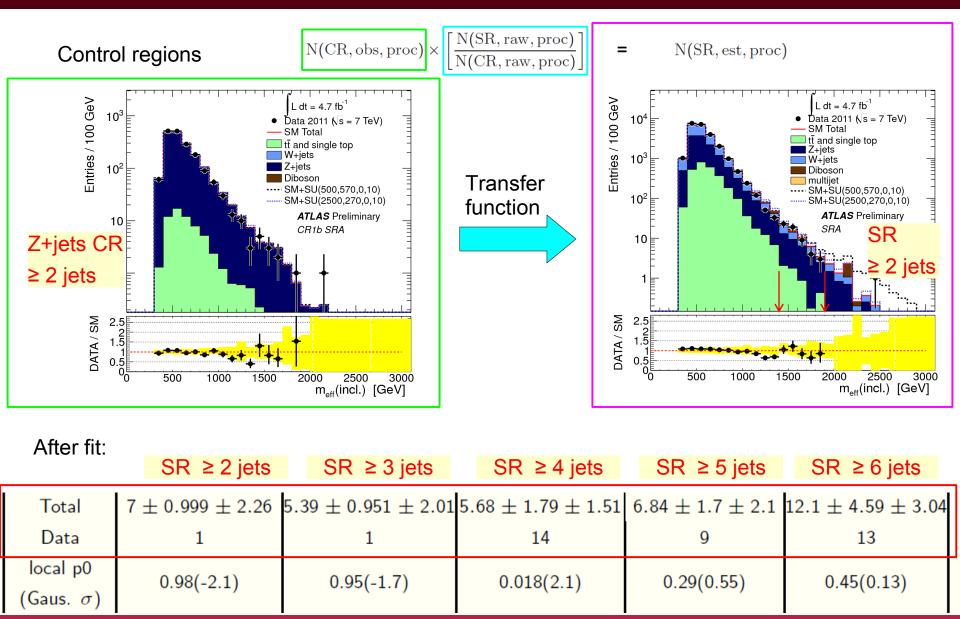
Weak production: talk by Louise Helaan

today!

- Search for squark/gluino production in final states with jets, E_T miss, and no leptons, sensitive to final states from squarks decaying directly (≥ 2 jets) to longer decay chains (≥ 6 jets);
- Signal/background discrimination based on the effective mass m_{eff} sensitive to the SUSY mass scale:

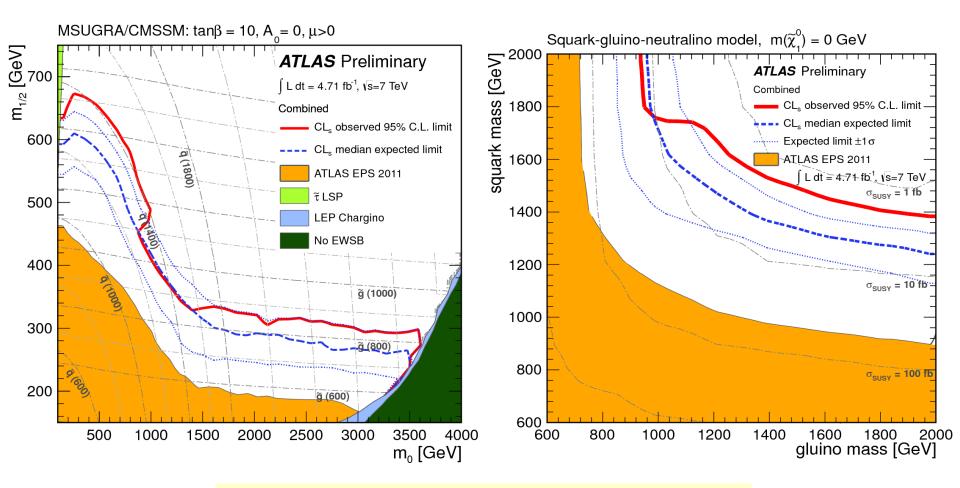
$$m_{\rm eff} = E_{\rm T}^{\rm miss} + \sum_{\rm SR \ jets} p_{\rm T}$$

- 11 <u>inclusive</u> signal regions (SR), depending on jet multiplicities and m_{eff}:
 - From **2 to 6 jet multiplicities** and various combination of m_{eff} cuts:
 - Optimized to achieve maximal reach over $(m_{\tilde{q}}, m_{\tilde{g}})$ plane, and to enhance sensitivity to models with compressed spectra (small mass splitting)
- Backgrounds from multi-jet processes kept under control through cut on the minimum azimuthal angle ($\Delta \phi$) between the jets and $E_{\scriptscriptstyle T}^{\rm miss}$;


- SM backgrounds from mismeasured multi-jet events, W/Z(→ vv)+jets, tt in signal regions: estimated from background-enriched control regions (CR) through transfer factors (TF, data driven for QCD);
- For each signal region, 5 control regions:

CR	SR Background	CR process	CR selection
CR1a	$Z(o u u)+{\sf jets}$	$\gamma+{\sf jets}$	Isolated photon
CR1b	$Z(o u u)+{\sf jets}$	$Z(o\ell\ell)+$ jets	$ \mathit{m}(\ell,\ell)-\mathit{m}(Z) < 25 GeV$
CR2	QCD jets	QCD jets	Reversed $\Delta\phi(j_i, E_{ m T}^{ m miss})$ cut
CR3	$W(o \ell u)+{\sf jets}$	$W(o \ell u)+{\sf jets}$	30 GeV $< m_T(\ell, E_{ m T}^{ m miss}) <$ 100 GeV, <i>b</i> -veto
CR4	$t \overline{t}$ and single- t	$t \overline{t} o bbqq' \ell u$	30 GeV $< m_T(\ell, E_{ m T}^{ m miss}) <$ 100 GeV, \emph{b} -tag

 A global fit for the normalisation of each background from the control regions is simultaneously performed separately for each signal region.


Update of previously published 1 fb⁻¹ result: arXiv:1109.6572

0-lepton - Results

O-lepton - Limits

- No significant excess observed with respect to SM predictions
- For each point the result from the signal region with best expected exclusion is shown

Limit for equal mass squarks & gluinos: ~ 1.4 TeV

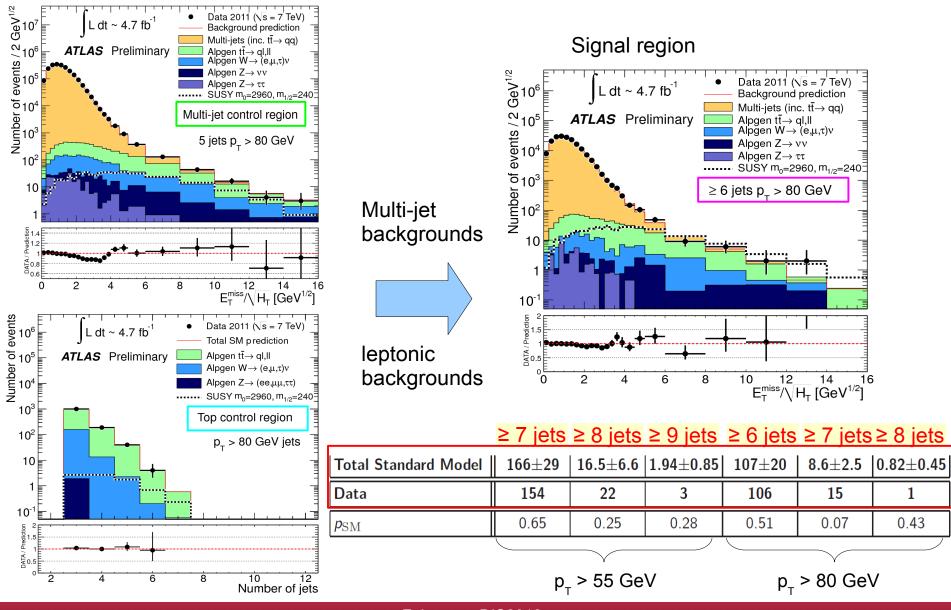
• Search for gluino production in final states with several jets, E_{τ}^{miss} , and no leptons, such as

$$\tilde{g} + \tilde{g} \rightarrow \left(t + \bar{t} + \tilde{\chi}_1^0\right) + \left(t + \bar{t} + \tilde{\chi}_1^0\right)$$

Six <u>non-exclusive</u> signal regions:

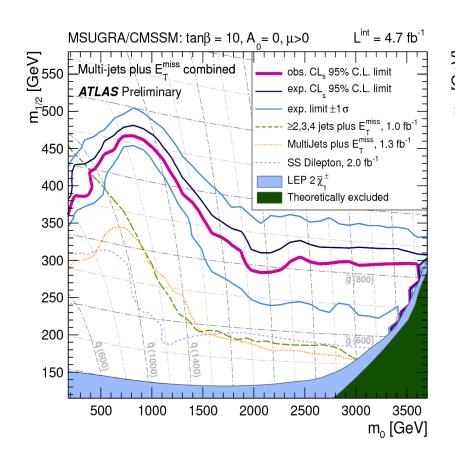
Leptons (e, μ)	=0							
Jet <i>p</i> _T		$>$ 55 ${ m GeV}$,	$> 80\mathrm{GeV}$				
Jet $ \eta $	< 2.8							
Number of jets	≥ 7 ≥ 8 ≥ 9 ≥ 6 ≥ 7 ≥ 8							
$E_{ m T}^{ m miss}/\sqrt{H_T}$	$> 4 \mathrm{GeV}^{1/2}$							

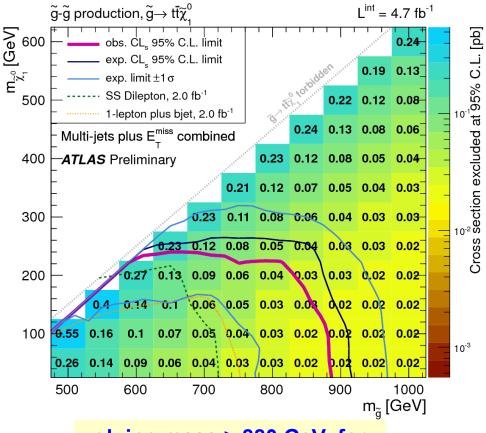
Jet multiplicity/p_T motivated by trigger


No ΔR(jet,jet) cut! Large acceptance gain

Designed for robust multi-jet background estimation

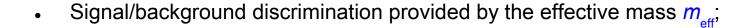
- H_{T} scalar sum of the transverse momenta of all jets with pT > 40 GeV and $|\eta|$ < 2.8
- $\sqrt{H_T}$ correlated with E_T^{miss} resolution
- Main backgrounds from:
 - multi-jet processes (including fully hadr. tt), estimated from data in control regions with lower jet multiplicities and $E_{\rm t}^{\rm miss}/\sqrt{H_{\rm T}}$
 - Leptonic': tt (semi and full-leptonic) and W/Z+jets, estimated from data (when possible) in control regions, and extrapolated to signal region using MC (similar to 0-lepton channel);


Update of previously published 1 fb⁻¹ result: arXiv:1110.2299

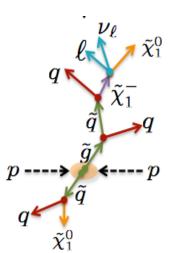

0-lepton: multi-jets - Results

0-lepton: multi-jet - Limits

- No significant excess observed with respect to SM predictions
- For each point the result from the signal region with best expected exclusion is shown

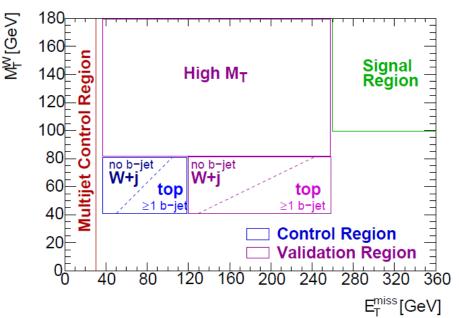


At large m0, gluino mass > 850 GeV

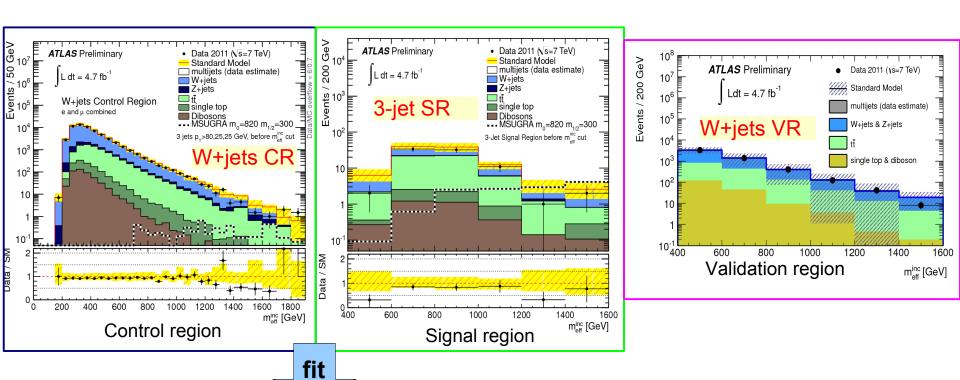

gluino mass > 880 GeV, for LSP mass < 100 GeV

 Search for strong production of squarks/gluinos pair in events containing jets, E_T miss, and one isolated lepton (electron or muon) from chargino decay;

- Orthogonal signal regions, with:
 - One soft lepton to probe models with compressed spectra:
 - $7(6) < p_{_{T}} < 25 (20) \text{ GeV for electrons (muons)}$
 - One hard lepton to probe higher SUSY mass scales:
 - $p_{\tau} > 25$ (20) GeV for electrons (muons)
 - 2 <u>exclusive</u> signal regions: 3, 4 jets

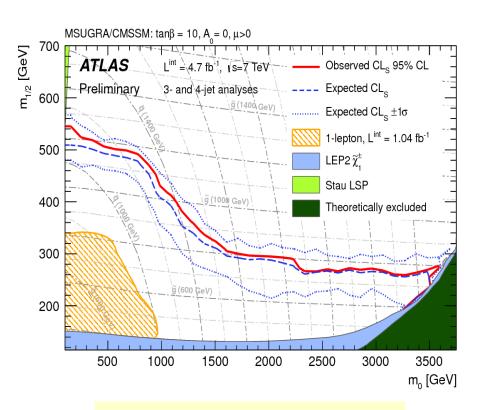


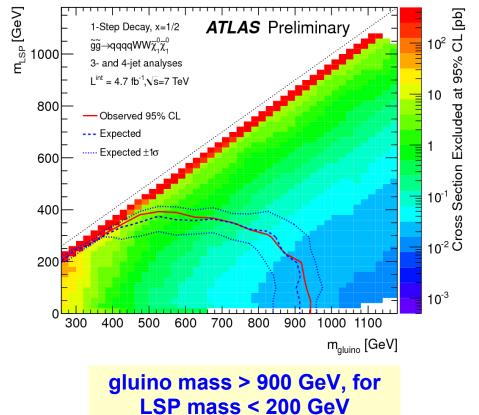
Main backgrounds: multi-jet processes, W+jets, tt


Update of previously published 1 fb⁻¹ result: arXiv:1109.6572

- Background in signal regions from (over-constrained) simultaneous fit based on profile likelihood method;
- Fit inputs (poisson distributed):
 - Observed number of W+jets and tt in control regions (binned in jet multiplicities);
 - Transfer factors (TF) for W+jets and tt from MC, cross-contamination and signal contamination in control regions taken into account;
 - Number of multi-jet events in signal/control regions: entirely datadriven
 - Minor backgrounds in signal/control regions from MC.

- Fit results are checked in validation regions, kinematically similar to signal regions;
- Fit free parameters: overall normalization for W+jets and tt;
- Uncertainties treated as nuisance parameters (gaussian distributed)

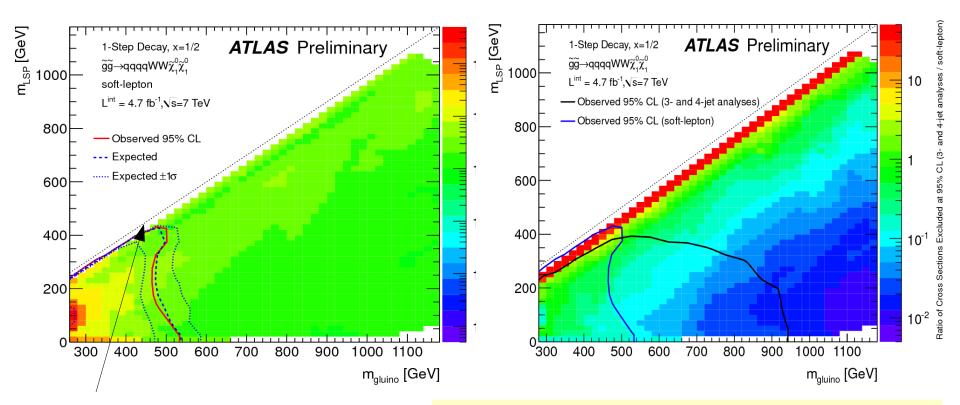

1-lepton - Results



	3-jet	4-jet	soft lepton
Observed events	3	6	26
Fitted bkg events	5.7 ± 4.0	8.3 ± 3.1	32 ± 11

1-lepton - Limits, hard lepton

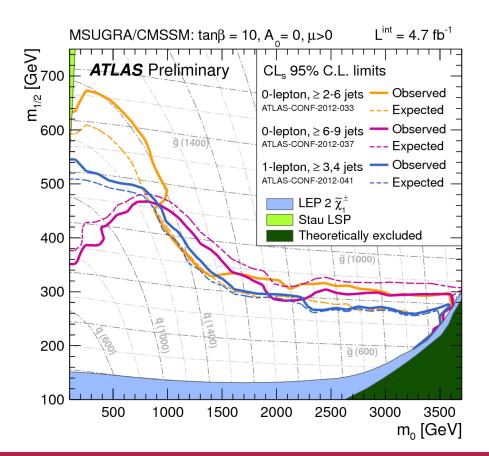
- No significant excess observed with respect to SM predictions;
- Limits set using the m_{eff} shape information from fit (3- and 4-jet analyses combined).



Limit for equal mass squarks & gluinos: ~ 1.2 TeV

1-lepton - Limits, soft lepton

- No significant excess observed with respect to SM predictions
- Limits set using the m_{eff} shape information from fit


Gluino and LSP almost degenerate along the diagonal

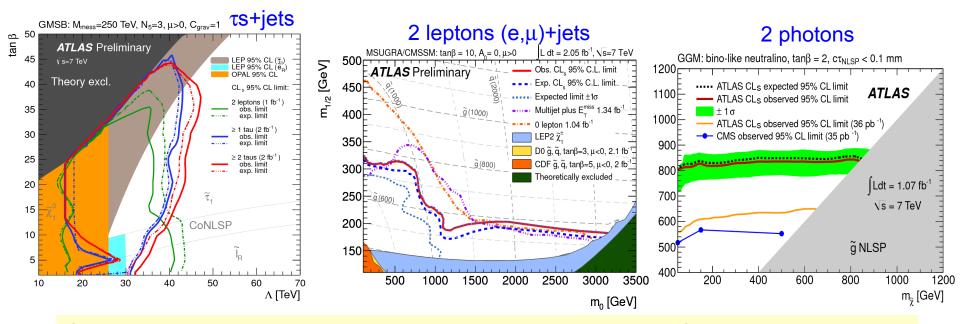
Limits better by x20-30 on visible cross-section with respect to the hard lepton analyses

Conclusions

Search for strong production of SUSY particles in ATLAS using complementary analyses:

- O- (+multi-jet) and 1-lepton results with full 2011 dataset (4.7 fb⁻¹), new signal regions to cover compressed spectra, limits further pushed!
- Many more analyses being updated, expect new results soon

- SUSY was not around the corner but still a long way to go to fully exploit the LHC search potential!
- Looking forward to analysing new LHC data @8TeV


Limit for equal mass squarks & gluinos: ~ 1.4 TeV

Spare slides

and that's NOT all folks!

Analysis currently being updated to full 2011 dataset:

Di-photon + E_T miss	(1.07 fb^{-1})	arXiv:1111.4116
 Di-lepton + jets + E_T miss 	(1.04 fb^{-1})	arXiv:1110.6189
• 1 τ + jets + E_{T}^{miss}	(2.05 fb^{-1})	ATLAS-CONF-2012-005
$\bullet \ge 2 \tau + E_{\tau}^{\text{miss}}$	(2.05 fb^{-1})	ATLAS-CONF-2012-002
 2 Same Sign leptons + jets + E_miss 	(2.05 fb^{-1})	ATLAS-CONF-2012-004

Stay tuned: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublic

0-lepton - Object and event selection

- Jets: Candidates are reconstructed using the anti-kt jet clustering algorithm with a
 distance parameter of 0.4. These are calibrated using pT and eta-dependent calibration
 factors based on Monte Carlo corrections validated with extensive test-beam and
 collision-data studies. Only jet candidates with pT > 20 GeV are retained.
- b-jets: standard b-tagging algorithm based on neural networks, working point 60% efficiency
- **Electrons:** Candidates are required to have pT> 20 GeV, to have |eta| < 2.47, and to pass electron shower shape and track selection criteria.
- Muons: Candidates are required to have pT > 10 GeV and |eta| < 2.4.
- Overlap removal: Jets within R < 0.2 of an electron candidate are removed. Following this any lepton within R < 0.4 of a jet are removed.
- **Lepton Veto:** If any electron or muon candidate is left after overlap removal the event is vetoed.
- Missing Transverse Energy: muon candidates before overlap removal and
 calorimeter clusters with |eta| < 4.5 that are calibrated to physics objects that they are
 associated with. Clusters that are not associated with high pT physics objects are also
 included uncalibrated.
- Event Cleaning: A series of cuts are also applied to reduce the non-collision and detector noise backgrounds to a very low level.
- Trigger: 1 jet with pT > 75 GeV (EM scale) and $E_{T}^{\text{miss}} > 55$ GeV

0-lepton - Signal regions

Small mass splitting, rely on ISR

			- - - - - - - - - - - - - -	,						
Requirement	Channel									
Requirement	A	A'	В	С	D	Е				
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$	160									
$p_{\mathrm{T}}(j_1)$ [GeV] >	> 130									
$p_{\mathrm{T}}(j_2) [\mathrm{GeV}] >$				60						
$p_{\mathrm{T}}(j_3) [\mathrm{GeV}] >$	-	_	60	60	60	60				
$p_{\mathrm{T}}(j_4)[\mathrm{GeV}]>$	_	_	_	60	60	60				
$p_{\mathrm{T}}(j_5) [\mathrm{GeV}] >$	_	_	_	_	40	40				
$p_{\mathrm{T}}(j_{6})[\mathrm{GeV}]>$	_	_	_	_	-	40				
$\Delta \phi(\text{jet}, E_{\text{T}}^{\text{miss}})_{\text{min}} >$	0.4 ($i = \{1, 2, (3)\}$	})	$0.4 (i = \{1, 2, 3\})$	(p_T)	> 40 GeV jets)				
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)>$	0.3 (2j)	0.4 (2j)	0.25 (3j)	0.25 (4j)	0.2 (5j)	0.15 (6j)				
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1900/1400/–	-/1200/-	1900/–/–	1500/1200/900	1500/-/-	1400/1200/900				

To be in the trigger plateau region

Optimized to

(SR A')

achieve maximal

reach over (m_q,m_g)

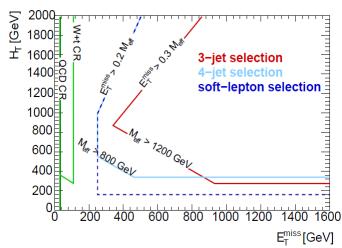
plane, and to
enhance sensitivity
to models with
compressed spectra

Longer decay chains

squark-squark, gluino-gluino, squark-gluino final states

SRs are defined by the last cut on m_{eff} (incl.), which can be 'tight', 'medium' and 'loose'.

0-lepton - Fit results


Process	Signal Region										
FIOCESS	SRC loose	SI	RE Ioose	SRA medium SRA		SRAp mediu	ım	SRC medium		SRE medium	
$t\bar{t}+SingleTop$	74 ± 13 (75)	66	± 26 (64)	$7 \pm 5 \ (5.1)$ $11 \pm 3.4 \ (1$		0)) 12 ± 4.5 (10)		17 ± 5.8 (13)		
$Z/\gamma+$ jets	$70 \pm 22 \ (61)$	22 =	± 6.4 (13)	$31 \pm 9.9 (34)$		$64 \pm 20 \ (69)$		$17 \pm 5.9 (16)$		8 ± 2.9 (4.4)	
W+jets	$62 \pm 9.3 (61)$	23	± 11 (23)	$19 \pm 4.5 (21)$		$26 \pm 4.6 (30)$		$8.1 \pm 2.9 (11)$		5.9 ± 3 (4.7)	
QCD jets	$0.39 \pm 0.4 \; (0.16)$	3.7	± 1.9 (3.8)	$0.14 \pm 0.24 \ (0.13)$		$0 \pm 0.13 \ (0.38)$		0.024 ± 0.034 (0.	013)	$0.8 \pm 0.53 \ (0.64)$	
Di-Bosons	$7.9 \pm 4 \ (7.9)$	4.2	± 2 (4.2)	$7.3 \pm 3.7 (7.5)$		$15 \pm 7.4 (16)$		1.7 ± 0.87 (1.7	7)	$2.7 \pm 1.3 (2.7)$	
Total	$214 \pm 24.9 \pm 13$	119 ±	32.6 ± 11.6	$64.8 \pm 10.$	$.2 \pm 6.92$	$115 \pm 19 \pm 9$.69	$38.6 \pm 6.68 \pm 4$.77	$34 \pm 4.47 \pm 5.57$	
Data	210		148	59)	85		36		25	
local p0	0.55(-0.14)	0	.21(0.8)	0.65(-	-0.4)	0.9(-1.3)		0.6(-0.26)		0.85(-1)	
(Gaus. σ)	0.00(0.11)		.22(0.0)	0.00(0.0(2.0)		3.3(3.23)		3.33(1)	
D.				Signal Region							
Process	SRA tight		SRB tight		SRC tight			SRD tight		SRE tight	
$t\bar{t}+SingleTop$	op 0.22 ± 0.35 (0.046)		$0.21 \pm 0.33 \; (0.066)$		$1.8 \pm 1.6 \; (0.96)$		2	$2 \pm 1.7 (0.92)$		3.9 ± 4 (2.6)	
$Z/\gamma+{\sf jets}$	2.9 ± 1.5 (3	3.1)	$2.5 \pm 1.4 (1.6)$		$2.1 \pm 1.1 (4.4)$		0.9	$95 \pm 0.58 (2.7)$	3.	$2 \pm 1.4 (1.8)$	
$W+{\sf jets}$	2.1 ± 0.99 (1.9)	$0.97 \pm 0.$	6 (0.84)	$1.2 \pm$	1.2 (2.7)	1	$.7 \pm 1.5 \ (2.5)$	2.	$3 \pm 1.7 (1.5)$	
QCD jets	0 ± 0.0024 (0	.002)	0 ± 0.0034	(0.0032)	0.00	058 (0.0023)	0 ±	0.0072 (0.021)	0.22	$2 \pm 0.25 (0.24)$	
Di-Bosons	1.7 ± 0.95	(2)	1.7 ± 0.9	95 (1.9)	0.49 \pm	0.26 (0.51)	2	$.2 \pm 1.2 (2.2)$	2.	5 ± 1.3 (2.5)	
Total	$7\pm0.999\pm$	2.26	5.39 ± 0.95	51 ± 2.01	5.68 ±	1.79 ± 1.51	6.8	$84 \pm 1.7 \pm 2.1$	12.1	\pm 4.59 \pm 3.04	
Data	1		1			14		9		13	
local p0	0.98(-2.1)		0.95(-	1.7)	0.0	18(2.1)		0.29(0.55)		0.45(0.13)	

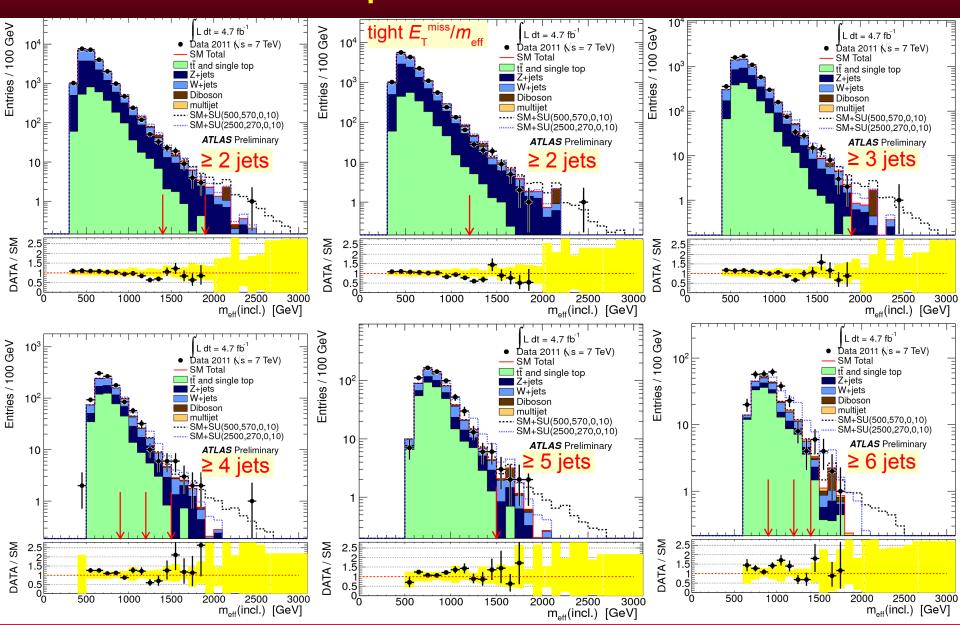
(Gaus. σ)

1-lepton - Signal regions

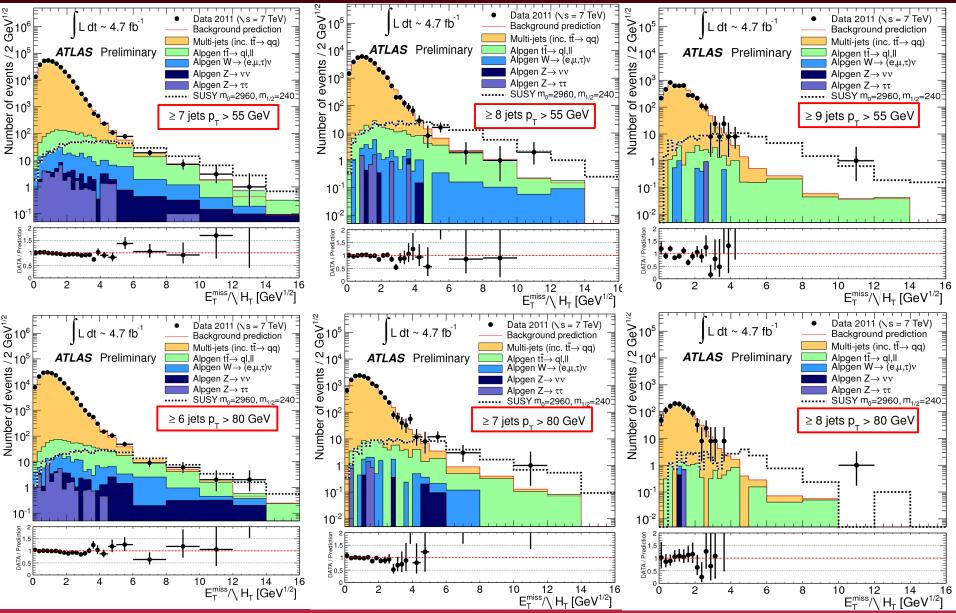
$$H_{\rm T} = M_{\rm eff}^{\rm inc} - E_{\rm T}^{\rm miss}$$

	3-jet	4-jet	soft-lepton				
Trigger	Single electron	Single electron or muon (+jet)					
N_{lep}	== 1	== 1	== 1				
$p_{\mathrm{T}}^{\ell}\left(\mathrm{GeV}\right)$	> 25 (20)	> 25 (20)	[7,25] ([6,20])				
$p_{\mathrm{T}}^{\ell_2}(\mathrm{GeV})$	< 10	< 10	< 7 (6)				
N_{jet}	≥ 3	≥ 4	≥ 2				
p_{T}^{jet} (GeV)	> 100, 25, 25	> 80, 80, 80, 80	> 130,25				
$p_{\mathrm{T}}^{\mathrm{jet}}$ (GeV)	< 80	_	/				
$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	> 250	> 250	/> 250				
$m_{\rm T}$ (GeV)	> 100	> 100	/ > 100				
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.3	> 0.2	/ > 0.3				
$m_{\rm eff}^{\rm inc}$ (GeV)	> 1200	> 800					
Hard jet from ISR							
Hard-lepton							

Optimized to achieve maximal reach over $(m_{\tilde{q}}, m_{\tilde{q}})$ plane


Transverse mass:

$$M_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{\ell}E_{\mathrm{T}}^{\mathrm{miss}}(1-\cos(\Delta\phi(\vec{\ell},\vec{P}_{\mathrm{T}}^{\mathrm{miss}})))}$$


Effective mass:
$$M_{\rm eff}^{\rm inc} = p_{\rm T}^{\ell} + \sum_{i=1}^{\ell} p_{\rm T,i} + E_{\rm T}^{\rm miss}$$

lepton jets

- Sensitive to E_{τ}^{miss} resolution as a function of calorimeter activity: $E_{\tau}^{\text{miss}}/m_{\text{eff}}$;
- No cut on $\Delta \phi$ (jet, E_{t}^{miss}) to increase sensitivity to decays with LSP boosted alongside the jet.

0-lepton - Results

0-lepton: multi-jets - Results

