Insights into the nucleon spin from lattice QCD

S. Collins
University of Regensburg

QCDSF Collaboration: G.S. Bali, M. Göckeler, Ph. Hägler, R. Horsley, Y. Nakamura, A. Nobile, H. Perlt, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, A. Sternbeck, F. Winter, J.M. Zanotti

Outline

- Introduction: what insights can the lattice give?
- Lattice calculations.
- Results for Δq, focus on Δs.
- Summary and outlook.

Based on arXiv:1112.3354 (QCDSF Collaboration).

Spin of the nucleon

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+L_{\psi}+J_{g}
$$

Composed of the contribution of the quark spin,

$$
\Delta \Sigma=\Delta u+\Delta d+\Delta s+\cdots
$$

the quark orbital and gluon total angular momentum, L_{ψ}, and J_{g}.

Notation: Δq contains both, the spin of the quarks q and of the antiquarks \bar{q}.

Naïve non-relativistic $\operatorname{SU}(6)$ quark model: $\Delta \Sigma=1, L_{\psi}=J_{g}=\Delta s=0$

What can be calculated on the lattice?

The individual quark spin contributions ($q=u, d, s$)

$$
\frac{\Delta q}{2} s_{\mu}=\frac{1}{m_{N}}\langle N, s| \bar{q} \gamma_{\mu} \gamma_{5} \frac{1}{2} q|N, s\rangle
$$

So that one can construct the axial charges:

$$
\begin{aligned}
a_{3} & =-s_{\mu} \frac{1}{m_{N}}\langle N, s| \bar{\psi} \gamma_{\mu} \gamma_{5} \lambda_{3} \psi|N, s\rangle=\Delta u-\Delta d=g_{A} \\
a_{8} & =-s_{\mu} \frac{\sqrt{3}}{m_{N}}\langle N, s| \bar{\psi} \gamma_{\mu} \gamma_{5} \lambda_{8} \psi|N, s\rangle=\Delta u+\Delta d-2 \Delta s \\
a_{0}\left(Q^{2}\right) & =-s_{\mu} \frac{1}{m_{N}}\langle N, s| \bar{\psi} \gamma_{\mu} \gamma_{5} \mathbb{1} \psi|N, s\rangle=\Delta u+\Delta d+\Delta s=\Delta \Sigma\left(Q^{2}\right)
\end{aligned}
$$

where $\psi=(u, d, s), \lambda_{j}$ are Gell-Mann flavour matrices.

Total quark angular momentum, $J_{q}=\frac{1}{2} \Delta q+L_{q}$, can be extracted from generalized form factors at $q^{2}=0$,

$$
J_{q}=\frac{1}{2}\left[A_{20}^{q}(0)+B_{20}^{q}(0)\right]
$$

where $A_{20}^{q}\left(q^{2}\right)$ and $B_{20}^{q}\left(q^{2}\right)$ extracted from matrix elements of the form $\left\langle N, s^{\prime}, p+q\right| \bar{q} \gamma^{\left\{\mu_{1}\right.} i \overleftrightarrow{D}^{\left.\mu_{2}\right\}} q|N, s, p\rangle$.

Can infer L_{q} and J_{g}.
Also, $\langle x\rangle_{\Delta}$ and $\langle x\rangle_{\delta}$. For review of recent results see, e.g. C. Alexandrou arXiv:1111.5960.

Focus on Δq and Δs in particular.

Extraction of $\Delta u, \Delta d, \Delta s$ from experiment

DIS expt. measures spin structure function of proton and neutron, $g_{1}^{p, n}\left(x, Q^{2}\right)$.

First moment related to a_{i} 's via OPE (leading twist),

$$
\Gamma_{1}^{p, n}\left(Q^{2}\right)=\int_{0}^{1} \mathrm{~d} x g_{1}^{p, n}\left(x, Q^{2}\right)=\frac{1}{36}\left[\left(a_{8} \pm 3 a_{3}\right) C_{N S}+4 a_{0} C_{S}\right]
$$

Use models to extrapolate g_{1} from expt. $x_{\min }$ to $x=0$.
$C_{S / N S}=C_{S / N S}\left(\alpha_{S}\left(Q^{2}\right)\right)$. a3 known from neutron β decay.
Hyperon β decays, assuming $S U(3)$ flavour symmetry, used to obtain a_{8}.
Combinations of a_{i} give Δq 's.
e.g. $\Delta s\left(5 \mathrm{GeV}^{2}\right)=\frac{1}{3}\left(a_{0}-a_{8}\right)=-0.085(13)(8)(9)$ HERMES (2006).

SIDIS offers direct measurement of $\Delta q(x)$ s using pion and kaon beams.
Limitation is knowledge of fragmentation functions. COMPASS (2010)

	Naive Extrap.	DSSV
$\Delta s+\Delta \bar{s}$	$-0.02 \pm 0.02 \pm 0.02$	$-0.10 \pm 0.02 \pm 0.02$

Lattice QCD

"Measurement": average over a representative ensemble of gluon configurations $\left\{U_{i}\right\}$ with probability $P\left(U_{i}\right) \propto \int[d \psi][d \bar{\psi}] e^{-S[U, \psi, \bar{\psi}]}$

$$
\langle O\rangle=\frac{1}{n} \sum_{i=1}^{n} O\left(U_{i}\right)+\Delta O \quad \Delta O \propto \frac{1}{\sqrt{n}} \xrightarrow{n \rightarrow \infty} 0
$$

Systematic uncertainties

- Sea quarks: present simulations with $N_{f}=2(u / d)$,

$$
N_{f}=2+1(u / d+s), N_{f}=2+1+1(u / d+s+c) .
$$

- Finite lattice spacing: need results for several a (>3) in order to perform $a \rightarrow 0$.
- Finite volume: need to perform simulations on several volumes, want $L m_{\pi} \geq 3.5-4$.
- Non-physical quark masses: typically $m_{\pi}>200 \mathrm{MeV}$, requiring chiral extrapolation of results.
- Renormalisation constants: needed to relate lattice matrix elements to continuum results in the $\overline{\mathrm{MS}}$ scheme.

Small a, large $V, m_{\pi} \rightarrow 138 \mathrm{MeV}$, simulation costs increase very rapidly.
However, balance between statistical and systematic error, for some quantities (stat.) $>$ (sys.).

Landscape of current lattice simulations

- MILC'10
- QCDSF' 10 (2)

QCDSF-UKQCD'10 BMWc '10
PACS-CS 00

- PBCSUKQCD'10
- JLQCD/TWQCD 109
$-\quad$ HSC 08
$\times \quad$ BGR 10

HSC
$\times \quad$ BGR $10(2)$

Figures taken from C Hölbling, Lattice 2010

Results will be presented with $a \approx$ $0.072 \mathrm{fm}, L a \approx 2.9 \mathrm{fm}, m_{\pi} \approx 285 \mathrm{MeV}$.

Spin Content

$$
\langle N, s|\left(\bar{q} \gamma_{\mu} \gamma_{5} q\right)^{l a t}|N, s\rangle=2 m_{N} s_{\mu} \frac{\Delta q^{l a t}}{2}
$$

On the lattice extracted using ratio of (3pt fn)/(2pt fn)

(a) connected, $R^{c o n}\left(t_{0}, t, t_{f}\right)$
(b) disconnected, $R^{d i s}\left(t_{0}, t, t_{f}\right)$

For $\Delta s^{l a t} \exists$ only the disconnected contribution.

Extract matrix element from ratios (at zero momentum):
For $t_{f} \gg t \gg t_{0}$:

$$
R^{c o n}\left(t_{0}, t, t_{f}\right)+R^{d i s}\left(t_{0}, t, t_{f}\right) \rightarrow 2 \frac{\langle N, s|\left(\bar{q} \gamma_{j} \gamma_{5} q\right)^{l a t}|N, s\rangle}{2 m_{N}}=\Delta q^{l a t}
$$

Disconnected quark line diagrams computationally expensive: involves calculating quark propagators from $(\vec{x}, t) \rightarrow\left(\vec{y}, t^{\prime}\right)$, "all-to-all".

In the past:

- Contribution ignored or quote differences. e.g. $g_{A}=\Delta u-\Delta d, J_{u-d}$, $\langle x\rangle_{\Delta u-\Delta d}$.

Methods now developed to calculate these disconnected terms: e.g. Δs !

Simulation details

Quark action: Non-perturbatively improved (clover) action. $O\left(a^{2}\right)$ leading order discretisation effects.

Configurations: QCDSF, $N_{f}=2(u / d)$ sea quarks, $a \sim 0.072 \mathrm{fm}$, $m_{\pi} \sim 285 \mathrm{MeV}$.

Volumes: $L a \sim 2.3 \mathrm{fm}\left(L m_{\pi}=3.4\right)$ and $2.9 \mathrm{fm}\left(L m_{\pi}=4.2\right)$.
Statistics: approx. 2000×8 for disconnected quark line diagram, 2000×2 for connected.

Quark mass: input mass parameter in quark action such that,

- disconnected loop, $m_{\pi} \sim 285$ (u / d sea), 449 and 720 (s) MeV,
- valence quark, $m_{\pi} \sim 285,449$ and 720 MeV .

$R^{c o n}\left(t_{0}=0, t, t_{f}=15 a\right)$

- Create all states (g.s. + excited) with same QNs, ground state dominates for $t_{f} \gg t \gg t_{0}$.
- Reduce excited state contribution using "smeared" source ($t_{0}=0$) and sink ($t_{f}=15 a$) nucleon operators.
- No renormalisation.

$R^{d i s}\left(t_{0}=0, t=4 a, t_{f}\right)$

- $t_{f} \gg t, t$ fixed.
- No renormalisation.
- Δs in sss nucleon.

Dependence on loop and valence quark masses

- All loop and valence quark mass combinations shown.
- No statistically significant dependence seen, suggests our results may also approx. apply to physical light-quark masses.

Volume dependence of $\Delta s^{l a t}$

- No statistically significant finite size effects.

Renormalisation

$N_{F}=2+1:$

$$
\begin{aligned}
a_{0}=\Delta \Sigma^{\overline{M S}}(\mu) & =(\Delta u+\Delta d+\Delta s)^{\overline{M S}}(\mu)=Z_{A}^{s}(\mu, a)(\Delta u+\Delta d+\Delta s)^{\text {lat }}(a), \\
a_{8} & =(\Delta u+\Delta d-2 \Delta s)^{\overline{M S}}=Z_{A}^{n s}(a)(\Delta u+\Delta d-2 \Delta s)^{\text {lat }}(a) \\
a_{3}=g_{A} & =(\Delta u-\Delta d)^{\overline{M S}}=Z_{A}^{n s}(a)(\Delta u-\Delta d)^{\text {lat }}(a)
\end{aligned}
$$

$$
\left(\begin{array}{c}
\Delta u(\mu) \\
\Delta d(\mu) \\
\Delta s(\mu)
\end{array}\right)^{\overline{M S}}=\left(\begin{array}{ccc}
Z_{A}^{n s}+\frac{z(\mu)}{3} & \frac{z(\mu)}{3} & \frac{z(\mu)}{3} \\
\frac{z(\mu)}{3} & Z_{A}^{n s}+\frac{z(\mu)}{3} & \frac{z(\mu)}{3} \\
\frac{z(\mu)}{3} & \frac{z(\mu)}{3} & Z_{A}^{n s}+\frac{z(\mu)}{3}
\end{array}\right)\left(\begin{array}{c}
\Delta u \\
\Delta d \\
\Delta s
\end{array}\right)^{\text {lat }}
$$

where $z(\mu)=Z_{A}^{s}(\mu)-Z_{A}^{n s}$.
$N_{F}=2:(\Delta u+\Delta d$ is now the singlet. $)$

$$
\left(\begin{array}{c}
\Delta u(\mu) \\
\Delta d(\mu) \\
\Delta s(\mu)
\end{array}\right)^{\overline{M S}}=\left(\begin{array}{ccc}
Z_{A}^{n s}+\frac{z(\mu)}{2} & \frac{z(\mu)}{2} & 0 \\
\frac{z(\mu)}{2} & Z_{A}^{n s}+\frac{z(\mu)}{2} & 0 \\
\frac{z(\mu)}{2} & \frac{z(\mu)}{2} & Z_{A}^{n s}
\end{array}\right)\left(\begin{array}{c}
\Delta u \\
\Delta d \\
\Delta s
\end{array}\right)^{\text {lat }}
$$

$O(a)$ improvement:

$$
\begin{aligned}
Z_{A}^{n s} & \mapsto Z_{A}^{n s}\left(1+b_{A} a m\right) \\
z(\mu) & \mapsto z(\mu)\left[1+\left(b_{A}^{s}-b_{A}\right) a m\right]
\end{aligned}
$$

where $b_{A}=b_{A}^{s}+O\left(\alpha_{s}^{2}\right)$. In total,

$$
\Delta q^{\overline{M S}}(\mu)=Z_{A}^{n s}\left(1+b_{A} a m_{q}\right) \Delta q^{\text {lat }}+\frac{z(\mu)}{2}(\Delta u+\Delta d)^{\text {lat }}
$$

- $Z_{A}^{n s}=0.76485(64)(73)$ determined non-perturbatively.
- $1+b_{A} a m=1.004-1.032$ to $O(\alpha)$ for quark mass range. Omit $b_{A}^{s}-b_{A}$.
- $z(\mu=\sqrt{7.4} \mathrm{GeV})=0.0055(27)$ to $O\left(\alpha^{2}\right)$, very slow running with μ.
- We allow for a 50% error on all perturbative results.

$\Delta q^{\overline{\mathrm{MS}}}(\mu=\sqrt{7.4} \mathrm{GeV})$

For $L a=2.9 \mathrm{fm}$, first error statistical, second is from renormalisation.

q	$\Delta q_{\text {con }}^{\text {lat }}$	$\Delta q_{\text {dis }}^{\text {lat }}$	$\Delta q^{\overline{\mathrm{MS}}}(\mu)$	DSSV $x_{\text {min }}$	DSSV 0
u	$1.071(15)$	$-0.049(17)$	$0.787(18)(2)$	$0.793(12)$	0.814
d	$-0.369(9)$	$-0.049(17)$	$-0.319(15)(1)$	$-0.416(11)$	-0.458
s	0	$-0.027(12)$	$-\mathbf{0 . 0 2 0 (1 0) (1)}$	$-0.012(24)$	-0.114
a_{3}	$1.439(17)$	0	$\mathbf{1 . 1 0 5 (1 3) (2)}$	1.21	1.272
a_{8}	$0.702(18)$	$-0.044(19)$	$\mathbf{0 . 5 0 7 (2 0) (\mathbf { 1 })}$	0.401	0.583
Σ	$0.702(18)$	$-0.124(44)$	$\mathbf{0 . 4 4 8 (3 7) (2)}$	$0.366(17)$	0.242

Mixing effects are very small. DSSV : de Florian et al. (2009), $x_{\text {min }}=0.001$.

Systematic uncertainties

- Uncertainty from finite volume and renormalisation not significant.
- Non physical light quark mass $\left(m_{u / d} \sim 4 m_{u / d}^{\text {phys }}\right.$) likely to be dominant source: $a_{3}=g_{A}=\Delta u-\Delta d$ underestimated.

QCDSF: D. Pleiter et al. (2010)

Similar underestimates seen in results from other collaborations.

Review by C. Alexandrou (2011)

We underestimate g_{A} by 13%. We add 20% systematic certainty for finite a effects, $m_{u / d} \neq m_{u / d}^{\text {phys }}$ and neglecting strange sea quark.

We find for $\overline{\mathrm{MS}}$ at $\mu=\sqrt{7.4} \mathrm{GeV}$:

$$
\begin{array}{rlc}
\Delta \Sigma=\Delta u+\Delta d+\Delta s & =0.45(4)(9) \\
\Delta s & =-0.020(10)(4)
\end{array}
$$

For the strange spin content the statistical error dominates.

Other modern lattice calculation of Δs

Babich et al. (2010), unrenormalised, for $N_{f}=2, m_{\pi}=400 \mathrm{MeV}$, $a_{t} \sim 0.036 \mathrm{fm}, a_{s}=0.108 \mathrm{fm}$.

- Local operator: $\Delta s^{\text {lat }}=-0.024(15)$.
- Point split: $\Delta s^{l a t}=-0.019(11)$

$J_{u}=\frac{1}{2}\left[A_{20}^{\mu}(0)+B_{20}^{u}(0)\right]$ and J_{d}

$$
\begin{aligned}
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| O^{\mu \nu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[A_{20}\left(q^{2}\right) \gamma^{\{\mu}\left(p+p^{\prime}\right)^{\nu\}}+\right. \\
& \left.B_{20}\left(q^{2}\right) \frac{i \sigma^{\{\mu \alpha} q_{\alpha}\left(p+p^{\prime}\right)^{\nu\}}}{2 m}+C_{20}\left(q^{2}\right) \frac{1}{m} q^{\{\mu} q^{\nu\}}\right] u_{N}(p, s)
\end{aligned}
$$

Assuming sea quark contribution small down to $m_{\pi} \sim 300 \mathrm{MeV}$: $J_{u} \sim 0.2$ and $J_{d} \sim 0$.

ETMC (2011).

LHPC (2010).

Summary and Outlook

- Lattice calculations have an important role to play in determining the spin content of the nucleon: $\Delta q, \Delta \Sigma, J_{q}, \ldots$
- Previously, the disconnected quark line diagrams were not calculated: differences quoted, g_{A}, J_{u-d}, \ldots, and no $\Delta s, \Delta \Sigma$ or a_{8}.
- New methods now make it possible to calculate these diagrams.
- We suggest to use Δs result to constrain polarized PDFs.

In the future:

- Investigate lattice spacing and light quark mass dependence of the results. Also move to $N_{f}=2+1$ and improve statistical uncertainty.
- Calculate other quantities, $J_{q},\langle x\rangle_{\Delta}$ and $\langle x\rangle_{\delta}$.

