Insights into the nucleon spin from lattice QCD

S. Collins University of Regensburg

QCDSF Collaboration: G.S. Bali, M. Göckeler, Ph. Hägler, R. Horsley,Y. Nakamura, A. Nobile, H. Perlt, D. Pleiter, P.E.L. Rakow, A. Schäfer,G. Schierholz, A. Sternbeck, F. Winter, J.M. Zanotti

Outline	Introduction	Lattice Calculations	Results	Summary
• ••				
Outline				

- Introduction: what insights can the lattice give?
- Lattice calculations.
- Results for Δq , focus on Δs .
- Summary and outlook.

Based on arXiv:1112.3354 (QCDSF Collaboration).

Outline	Introduction	Lattice Calculations	Results	Summary
Spin of	the nucleon			

$$rac{1}{2} = rac{1}{2}\Delta\Sigma + L_{\psi} + J_{g}$$

Composed of the contribution of the quark spin,

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s + \cdots,$$

the quark orbital and gluon total angular momentum, L_{ψ} , and J_{g} .

Notation: Δq contains both, the spin of the quarks q and of the antiquarks \bar{q} .

Naïve non-relativistic SU(6) quark model: $\Delta\Sigma=1$, $L_\psi=J_g=\Delta s=0$

 a_0

What can be calculated on the lattice?

The individual quark spin contributions (q = u, d, s)

$$rac{\Delta q}{2} \;\; s_{\mu} \;\; = \;\; rac{1}{m_{\mathcal{N}}} \langle \mathcal{N}, s | ar{q} \gamma_{\mu} \gamma_5 rac{1}{2} q | \mathcal{N}, s
angle$$

So that one can construct the axial charges:

$$\begin{aligned} a_{3} &= -s_{\mu} \frac{1}{m_{N}} \langle N, s | \bar{\psi} \gamma_{\mu} \gamma_{5} \lambda_{3} \psi | N, s \rangle &= \Delta u - \Delta d = g_{A} \\ a_{8} &= -s_{\mu} \frac{\sqrt{3}}{m_{N}} \langle N, s | \bar{\psi} \gamma_{\mu} \gamma_{5} \lambda_{8} \psi | N, s \rangle &= \Delta u + \Delta d - 2\Delta s \\ (Q^{2}) &= -s_{\mu} \frac{1}{m_{N}} \langle N, s | \bar{\psi} \gamma_{\mu} \gamma_{5} \mathbb{1} \psi | N, s \rangle &= \Delta u + \Delta d + \Delta s = \Delta \Sigma (Q^{2}) \end{aligned}$$

where $\psi = (u, d, s)$, λ_j are Gell-Mann flavour matrices.

Total quark angular momentum, $J_q = \frac{1}{2}\Delta q + L_q$, can be extracted from generalized form factors at $q^2 = 0$,

$$J_q = \frac{1}{2} \left[A_{20}^q(0) + B_{20}^q(0) \right]$$

where $A_{20}^q(q^2)$ and $B_{20}^q(q^2)$ extracted from matrix elements of the form $\langle N, s', p+q | \bar{q} \gamma^{\{\mu_1\}} i \overset{D}{D}{}^{\mu_2\}} q | N, s, p \rangle$.

Can infer L_q and J_g .

Also, $\langle x \rangle_{\Delta}$ and $\langle x \rangle_{\delta}$. For review of recent results see, e.g. C. Alexandrou arXiv:1111.5960.

Focus on Δq and Δs in particular.

Extraction of Δu , Δd , Δs from experiment

DIS expt. measures spin structure function of proton and neutron, $g_1^{p,n}(x,Q^2)$.

First moment related to *a_i*'s via OPE (leading twist),

$$\Gamma_1^{p,n}(Q^2) = \int_0^1 \mathrm{d}x \, g_1^{p,n}(x,Q^2) = \frac{1}{36} \left[(a_8 \pm 3a_3) C_{NS} + 4a_0 C_S \right]$$

Use models to extrapolate g_1 from expt. x_{min} to x = 0.

 $C_{S/NS} = C_{S/NS}(\alpha_s(Q^2))$. a_3 known from neutron β decay.

Hyperon β decays, assuming SU(3) flavour symmetry, used to obtain a_8 .

Combinations of a_i give Δq 's. e.g. $\Delta s(5 \text{GeV}^2) = \frac{1}{3}(a_0 - a_8) = -0.085(13)(8)(9)$ HERMES (2006).

SIDIS offers direct measurement of $\Delta q(x)$ s using pion and kaon beams.

Limitation is knowledge of fragmentation functions. COMPASS (2010)

Naive Extrap.DSSV $\Delta s + \Delta \overline{s}$ $-0.02 \pm 0.02 \pm 0.02$ $-0.10 \pm 0.02 \pm 0.02$

Outline			Introd	luction	La	attice Calculations	Results	Summary
Lat	tice	QC	D					
La	0 0 0 0		0 0 0 0		plaquette link o site	continuum limit: <i>a</i> infinite volume: <i>La</i> $\langle O \rangle = \frac{1}{Z} \int [dU] [dy]$	ightarrow 0, <i>La</i> fixed ightarrow \infty ho][$dar{\psi}$] $O[U]e^{-S}$	$\mathfrak{s}[U,\psi,ar{\psi}]$

$$\langle \mathbf{O} \rangle = \frac{1}{Z} \int [dU] \, [d\psi] [d\bar{\psi}] \, \mathbf{O}[U] e^{-S[U,\psi,\bar{\psi}]}$$

"Measurement": average over a representative ensemble of gluon configurations $\{U_i\}$ with probability $P(U_i) \propto \int [d\psi] [d\bar{\psi}] e^{-S[U,\psi,\bar{\psi}]}$

$$\langle O \rangle = rac{1}{n} \sum_{i=1}^{n} O(U_i) + \Delta O \qquad \Delta O \propto rac{1}{\sqrt{n}} \stackrel{n \to \infty}{\longrightarrow} 0$$

- Sea quarks: present simulations with $N_f = 2 (u/d)$, $N_f = 2 + 1 (u/d + s)$, $N_f = 2 + 1 + 1 (u/d + s + c)$.
- Finite lattice spacing: need results for several a (> 3) in order to perform a → 0.
- Finite volume: need to perform simulations on several volumes, want $Lm_{\pi} \geq 3.5 4$.
- ► Non-physical quark masses: typically m_π > 200 MeV, requiring chiral extrapolation of results.
- \blacktriangleright Renormalisation constants: needed to relate lattice matrix elements to continuum results in the $\overline{\rm MS}$ scheme.

Small a, large V, $m_\pi
ightarrow 138$ MeV, simulation costs increase very rapidly.

However, balance between statistical and systematic error, for some quantities (stat.)>(sys.).

Summary

Landscape of current lattice simulations

Figures taken from C Hölbling, Lattice 2010

Results will be presented with $a \approx$ 0.072 fm, $La \approx$ 2.9 fm, $m_{\pi} \approx$ 285 MeV.

Outline	Introduction	Lattice Calculations	Results	Summary

Spin Content

$$\langle N, s | (\bar{q} \gamma_{\mu} \gamma_{5} q)^{lat} | N, s \rangle = 2 m_{N} s_{\mu} \frac{\Delta q^{lat}}{2}$$

On the lattice extracted using ratio of (3pt fn)/(2pt fn)

(a) connected, $R^{con}(t_0, t, t_f)$ (b) disconnected, $R^{dis}(t_0, t, t_f)$

For $\Delta s^{lat} \exists$ only the disconnected contribution.

Outline Introduction Lattice Calculations Results Summarv

Extract matrix element from ratios (at zero momentum):

For $t_f \gg t \gg t_0$:

$$R^{con}(t_0,t,t_f) + R^{dis}(t_0,t,t_f)
ightarrow 2rac{\langle N,s|(ar q\gamma_j\gamma_5 q)^{lat}|N,s
angle}{2m_N} = \Delta q^{lat}$$

Disconnected quark line diagrams computationally expensive: involves calculating quark propagators from $(\vec{x}, t) \rightarrow (\vec{y}, t')$, "all-to-all".

In the past:

► Contribution ignored or quote differences. e.g. $g_A = \Delta u - \Delta d$, J_{u-d} , $\langle x \rangle_{\Lambda u - \Lambda d}$

Methods now developed to calculate these disconnected terms: e.g. $\Delta s!$

Simulation details

Quark action: Non-perturbatively improved (clover) action. $O(a^2)$ leading order discretisation effects.

Configurations: QCDSF, $N_f = 2 \ (u/d)$ sea quarks, $a \sim 0.072$ fm, $m_{\pi} \sim 285$ MeV.

Volumes: $La \sim 2.3$ fm ($Lm_{\pi} = 3.4$) and 2.9 fm ($Lm_{\pi} = 4.2$).

Statistics: approx. 2000 \times 8 for disconnected quark line diagram, 2000 \times 2 for connected.

Quark mass: input mass parameter in quark action such that,

- disconnected loop, $m_{\pi} \sim 285~(u/d~{
 m sea})$, 449 and 720 (s) MeV,
- valence quark, $m_{\pi} \sim 285$, 449 and 720 MeV.

- ► Create all states (g.s. + excited) with same QNs, ground state dominates for t_f ≫ t ≫ t₀.
- ▶ Reduce excited state contribution using "smeared" source (t₀ = 0) and sink (t_f = 15a) nucleon operators.
- No renormalisation.

Outline	Introduction	Lattice Calculations	Results	Summary

$$R^{dis}(t_0=0,t=4a,t_f)$$

- $t_f \gg t$, t fixed.
- No renormalisation.
- Δs in *sss* nucleon.

Dependence on loop and valence quark masses

- ► All loop and valence quark mass combinations shown.
- No statistically significant dependence seen, suggests our results may also approx. apply to physical light-quark masses.

32³

Volume dependence of Δs^{lat}

No statistically significant finite size effects.

Outline	Introduction	Lattice Calculations	Results	Summary

Renormalisation

 $N_F = 2 + 1$:

$$egin{aligned} &a_0 = \Delta \Sigma^{\overline{MS}}(\mu) = (\Delta u + \Delta d + \Delta s)^{\overline{MS}}(\mu) = Z^s_A(\mu,a)(\Delta u + \Delta d + \Delta s)^{ ext{lat}}(a)\,, \ &a_8 = (\Delta u + \Delta d - 2\Delta s)^{\overline{MS}} = Z^{ns}_A(a)(\Delta u + \Delta d - 2\Delta s)^{ ext{lat}}(a)\,, \ &a_3 = g_A = (\Delta u - \Delta d)^{\overline{MS}} = Z^{ns}_A(a)(\Delta u - \Delta d)^{ ext{lat}}(a)\,, \end{aligned}$$

$$\begin{pmatrix} \Delta u(\mu) \\ \Delta d(\mu) \\ \Delta s(\mu) \end{pmatrix}^{\overline{MS}} = \begin{pmatrix} Z_A^{ns} + \frac{z(\mu)}{3} & \frac{z(\mu)}{3} & \frac{z(\mu)}{3} \\ \frac{z(\mu)}{3} & Z_A^{ns} + \frac{z(\mu)}{3} & \frac{z(\mu)}{3} \\ \frac{z(\mu)}{3} & \frac{z(\mu)}{3} & Z_A^{ns} + \frac{z(\mu)}{3} \end{pmatrix} \begin{pmatrix} \Delta u \\ \Delta d \\ \Delta s \end{pmatrix}^{\text{lat}},$$

where $z(\mu) = Z_A^s(\mu) - Z_A^{ns}$. $N_F = 2$: $(\Delta u + \Delta d \text{ is now the singlet.})$

$$\begin{pmatrix} \Delta u(\mu) \\ \Delta d(\mu) \\ \Delta s(\mu) \end{pmatrix}^{\overline{MS}} = \begin{pmatrix} Z_A^{ns} + \frac{z(\mu)}{2} & \frac{z(\mu)}{2} & 0 \\ \frac{z(\mu)}{2} & Z_A^{ns} + \frac{z(\mu)}{2} & 0 \\ \frac{z(\mu)}{2} & \frac{z(\mu)}{2} & Z_A^{ns} \end{pmatrix} \begin{pmatrix} \Delta u \\ \Delta d \\ \Delta s \end{pmatrix}^{\text{lat}}$$

Outline	Introduction	Lattice Calculations	Results	Summary	
O(a) improve	ement:				
$egin{aligned} &Z_A^{\it ns}\mapsto Z_A^{\it ns}(1+b_A{\it am}),\ &z(\mu)\mapsto z(\mu)[1+(b_A^s-b_A){\it am}], \end{aligned}$					
where $b_A = b_A$	$b^s_{\mathcal{A}} + \mathcal{O}(lpha^2_s)$. In tot	tal,			

$$\Delta q^{\overline{MS}}(\mu) = Z_A^{ns}(1+b_Aam_q)\Delta q^{\mathrm{lat}} + rac{z(\mu)}{2}(\Delta u + \Delta d)^{\mathrm{lat}}$$

• $Z_A^{ns} = 0.76485(64)(73)$ determined non-perturbatively.

- ▶ $1 + b_A am = 1.004 1.032$ to $O(\alpha)$ for quark mass range. Omit $b_A^s b_A$.
- ► $z(\mu = \sqrt{7.4} \text{ GeV}) = 0.0055(27)$ to $O(\alpha^2)$, very slow running with μ .
- ▶ We allow for a 50 % error on all perturbative results.

$$\Delta q^{\overline{ ext{MS}}}(\mu = \sqrt{7.4}\, ext{GeV})$$

For La = 2.9 fm, first error statistical, second is from renormalisation.

q	$\Delta q_{ m con}^{ m lat}$	$\Delta q_{ m dis}^{ m lat}$	$\Delta q^{\overline{ ext{MS}}}(\mu)$	DSSV x _{min}	DSSV 0
и	1.071(15)	-0.049(17)	0.787(18)(2)	0.793(12)	0.814
d	-0.369(9)	-0.049(17)	-0.319(15)(1)	-0.416(11)	-0.458
5	0	-0.027(12)	-0.020(10)(1)	-0.012(24)	-0.114
a ₃	1.439(17)	0	1.105(13)(2)	1.21	1.272
a 8	0.702(18)	-0.044(19)	0.507(20)(1)	0.401	0.583
Σ	0.702(18)	-0.124(44)	0.448(37)(2)	0.366(17)	0.242

Mixing effects are very small. DSSV : de Florian et al. (2009), $x_{min} = 0.001$.

- Systematic uncertainties
 - Uncertainty from finite volume and renormalisation not significant.
 - Non physical light quark mass (m_{u/d} ~ 4m^{phys}_{u/d}) likely to be dominant source: a₃ = g_A = ∆u − ∆d underestimated.

QCDSF: D. Pleiter et al. (2010)

Similar underestimates seen in results from other collaborations.

Review by C. Alexandrou (2011)

We underestimate g_A by 13%. We add 20% systematic certainty for finite a effects, $m_{u/d} \neq m_{u/d}^{phys}$ and neglecting strange sea quark.

Outline	Introduction	Lattice Calculations	Results	Summary

We find for $\overline{\rm MS}$ at $\mu=\sqrt{7.4}$ GeV:

$$\Delta\Sigma = \Delta u + \Delta d + \Delta s = 0.45(4)(9)$$

 $\Delta s = -0.020(10)(4)$

For the strange spin content the statistical error dominates.

Other modern lattice calculation of Δs

Babich et al. (2010), unrenormalised, for $N_f=2$, $m_\pi=400$ MeV, $a_t\sim 0.036$ fm, $a_s=0.108$ fm.

- Local operator: $\Delta s^{lat} = -0.024(15)$.
- Point split: $\Delta s^{lat} = -0.019(11)$

$$J_u = rac{1}{2} [A^u_{20}(0) + B^u_{20}(0)]$$
 and J_d

$$\langle N(p',s')|O^{\mu\nu}|N(p,s)\rangle = \bar{u}_N(p',s') \Big[A_{20}(q^2) \gamma^{\{\mu}(p+p')^{\nu\}} + \\ B_{20}(q^2) \frac{i\sigma^{\{\mu\alpha}q_\alpha(p+p')^{\nu\}}}{2m} + C_{20}(q^2) \frac{1}{m}q^{\{\mu}q^{\nu\}} \Big] u_N(p,s)$$

Assuming sea quark contribution small down to $m_\pi\sim 300$ MeV: $J_u\sim 0.2$ and $J_d\sim 0.$

Nucleon Spin

Summary and Outlook

- ► Lattice calculations have an important role to play in determining the spin content of the nucleon: Δq , $\Delta \Sigma$, J_q ,
- ► Previously, the disconnected quark line diagrams were not calculated: differences quoted, g_A , J_{u-d} , ..., and no Δs , $\Delta \Sigma$ or a_8 .
- ► New methods now make it possible to calculate these diagrams.
- We suggest to use Δs result to constrain polarized PDFs.

In the future:

- ► Investigate lattice spacing and light quark mass dependence of the results. Also move to N_f = 2 + 1 and improve statistical uncertainty.
- Calculate other quantities, J_q , $\langle x \rangle_{\Delta}$ and $\langle x \rangle_{\delta}$.