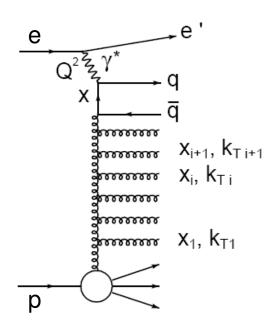
## Measurement of the Azimuthal Correlation between the most Forward Jet and the Scattered Positron in Deep Inelastic Scattering at HERA

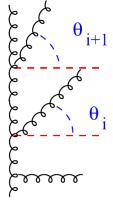


Lidia Goerlich
Institute of Nuclear Physics PAN, Cracow
( on behalf of the H1 Collaboration )



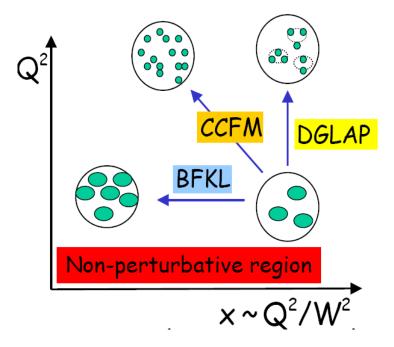

- QCD dynamics at low Bjorken-x
- QCD models
- Experimental Method
- Results
- Conclusions




#### **QCD dynamics at low Bjorken-x**

## HERA : DIS at low Bjorken-x down to $10^{-5} \rightarrow large \ \gamma^*p$ centre-of-mass-energy ( $W_{\gamma^*p} \approx Q^2 \ / \ x$ )

- enhanced phase space for gluon cascades exchanged between the proton and the photon
- pQCD multiparton emissions described only with approximations :



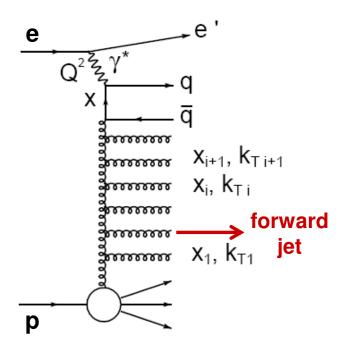

- DGLAP : Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution applicable at large Q<sup>2</sup> Assumes strong ordering of parton  $k_T$  Resums terms  $\sim (\alpha_s \ln Q^2)^n$
- BFKL: Balitsky-Fadin-Kuraev-Lipatov evolution
   Transition from DGLAP to BFKL scheme expected at low x
   No ordering in k<sub>T</sub>, strong ordering in x<sub>i</sub>
   Resums terms ~ (α<sub>S</sub> In(1/x))<sup>n</sup>
- CCFM: Ciafaloni-Catani-Fiorani-Marchesini equation applicable at all x and Q<sup>2</sup>
   Unification of DGLAP and BFKL approaches
   Emitted partons are ordered in angles



#### QCD dynamics at low Bjorken-x

- Search at HERA for effects of parton dynamics beyond the standard DGLAP approach
- Define observables / phase space regions sensitive to low x effects




- Strong rise of the proton structure function F<sub>2</sub>(x, Q<sup>2</sup>) with decreasing x
  - well described by NLO DGLAP over a large range of Q<sup>2</sup>

F<sub>2</sub> measurement is too inclusive to discriminate between different QCD evolution schemes

Hadronic final states – reflect kinematics, structure of gluon emissions

( forward jets / particles, inclusive jets, multijet production, azimuthal correlation in dijet events, tranverse energy flow, pt distribution of hadrons )

#### Forward jets in DIS

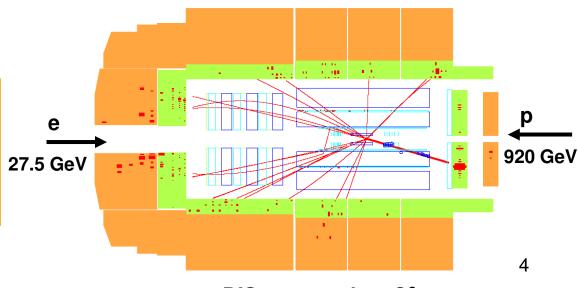


BFKL - more hard partons emitted close to the proton

Studies of forward jets are an experimental challenge:

region of high particle densities close to the proton remnant

#### Mueller – Navelet jets in DIS (1990):

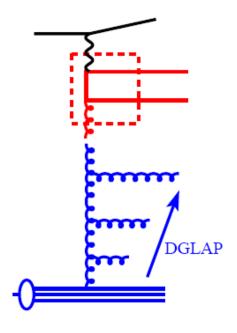

High transverse momentum and high energy jets produced close to the proton remnant direction (forward region in LAB)

**Suppress standard DGLAP evolution in Q<sup>2</sup>:** 

$$p_{T,jet}^2 \approx Q_2$$

**Enhance BFKL evolution in x:** 

$$x_{\text{fwdjet}} = E_{\text{fwdjet}} / E_{\text{p}} >> x_{\text{Bj}}$$

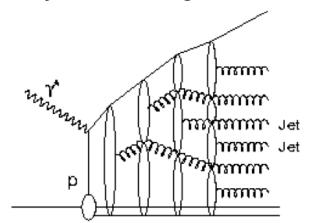



DIS event at low Q<sup>2</sup>

#### Monte Carlo models with different QCD dynamics

#### **RAPGAP - DGLAP**

LO QCD matrix elements+ HO modelled by leadinglog parton showers

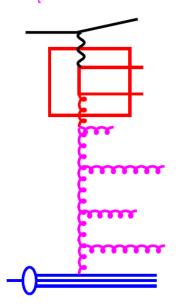



Single DGLAP ladder with strong ordering in k<sub>T</sub>

## ARIADNE Colour Dipole Model

CDM: QCD radiation from the colour dipole formed by the struck quark and the proton remnant.

Chain of independently radiating dipoles formed by the emitted gluons.

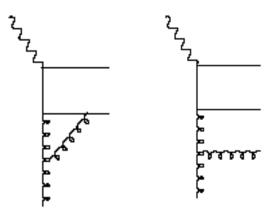



BFKL- like Monte Carlo : random walk in k<sub>T</sub>

#### **CASCADE - CCFM**

Off-shell QCD ME
+ parton emissions based
on the CCFM equation






Input: unintegrated gluon density function, different uPDF sets include singular or full terms of the gluon splitting function

#### **Fixed order NLO DGLAP predictions**

Forward jet cross sections – comparison with the predictions of pQCD

at NLO  $(\alpha_s^2)$  accuracy



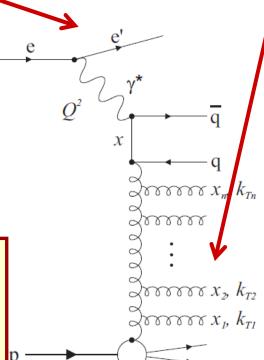
Forward jet analysis – reconstruction of jets in the Breit frame → at least dijet topology

NLOJET ++ program (Nagy & Trocsanyi, 2001): dijet production at parton level in DIS at NLO  $(\alpha_s^2)$ 

- PDF : CTEQ6.6,  $\alpha_S(M_Z) = 0.118$
- parton level cross sections corrected for hadronistaion effects using the RAPGAP model

#### Azimuthal decorrelation of forward jets in DIS

Azimuthal angle difference  $\Delta\Phi$  between the scattered positron and the forward jet


may offer a signature of BFKL dynamics

• Quark Parton Model e + q  $\rightarrow$  e + q simple two-body kinematics  $\Delta \phi = \phi_{el} - \phi_{fwdjet} = \pi$ 

Inclusion of higher order processes O(α<sub>S</sub><sup>n</sup>)
 decorrelates the jet from the positron

As the rapidity distance approximated by  $Y = In(x_{fwdjet}/x_{Bj})$  between the scattered positron and the forward jet grows the probability of multi-gluon emissions is increased

- J. Bartels et al., Phys. Lett. B384(1996)300 calculated  $\Delta \phi$  in LO BFKL, resumming the dominant terms  $\sim (\alpha_s Y)^n$
- S. Vera & F. Schwennsen, Phys. Rev. D77(2008)014001 calculated  $\Delta \phi$  in NLO BFKL, resumming the dominant terms  $\sim \alpha_s \; (\; \alpha_s Y \;)^n$



#### **Data selection**

#### H1 experiment, HERA data (2000) with 38.2 pb<sup>-1</sup>

#### **DIS** selection

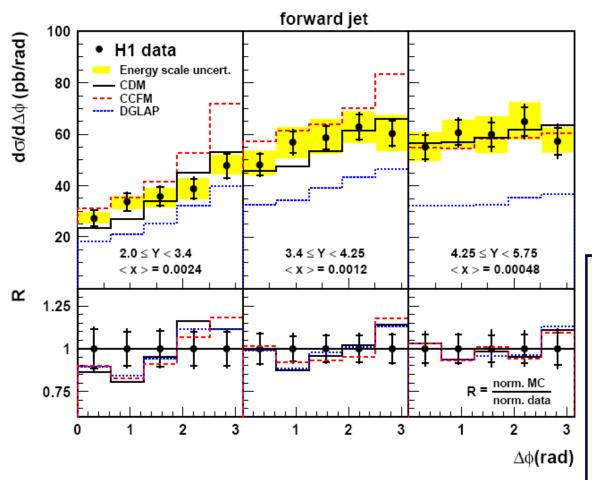
$$0.1 < y < 0.7$$
  
 $5 < Q^2 < 85 \text{ GeV}^2$   
 $0.0001 < x < 0.004$ 

#### Forward jets (inclusive k<sub>T</sub> algorithm)

Jets reconstructed in the Breit frame from combined track-calorimeter cluster objects and then boosted to LAB, all cuts in LAB

$$\begin{aligned} p_{T, \, fwdjet} \, > \, 6 \,\, GeV \\ 1.73 \, < \, \eta_{fwdjet} \, < \, 2.79 \\ x_{fwdjet} = E_{fwdjet} \, / \, E_p > \, 0.035 \\ 0.5 \, < \, p_{T, fwdjet}^2 \, / \, Q^2 \, < \, 6.0 \end{aligned}$$

- suppress k<sub>T</sub> ordered evolution by cut on p<sub>T</sub><sup>2</sup> / Q<sup>2</sup>
- enhance phase space for BFKL evolution without k<sub>T</sub> ordering by cut on x<sub>fwdiet</sub>


#### ~ 14000 DIS events with at least one forward jet

if more than one forward jet is found, the jet with the largest  $\eta_{\text{fwdjet}}$  is chosen  $\eta = -\ln(\tan\theta/2)$ ,  $\theta$  defined with respect to the initial proton direction

#### Forward jet azimuthal correlations

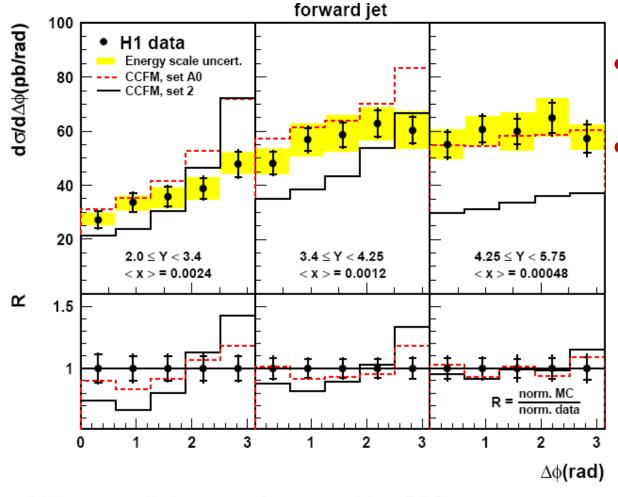
At higher Y correspondig to lower x the forward jet is more decorrelated from the scattered electron

Positron – fwd jet rapidity distance  $Y = In(x_{fwdjet} / x)$ 



#### **Cross sections:**

- well described by BFKL-like model CDM
- DGLAP predictions below the data
- CCFM (set A0) as good description as CDM at large Y


Ratio R of MC to data for normalised cross-section

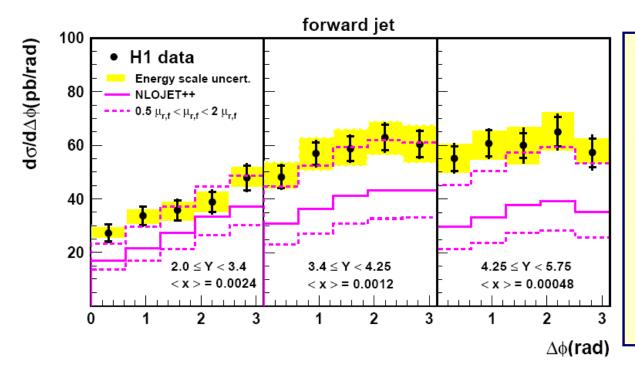
$$R = \left(\frac{1}{\sigma^{\rm MC}} \frac{d\sigma^{\rm MC}}{d\Delta\phi}\right) / \left(\frac{1}{\sigma^{\rm data}} \frac{d\sigma^{\rm data}}{d\Delta\phi}\right)$$

The shape of Δφ distributions is well described by all MC models

#### Forward jet azimuthal correlations

#### Predictions of the CCFM model depend on the choice of uPDF




- Cross sections strongly depend on uPDF
- Shape of ∆ø distributions
  - at low Y shows sensitivity to uPDF
  - well described by the set A0

Different splitting functions used in uPDF:

set A0 – only singular terms of the gluon splitting function set 2 – includes also non-singular terms

#### Forward jet azimuthal correlations

#### Comparison to NLO $(O(\alpha_s^2))$ predictions



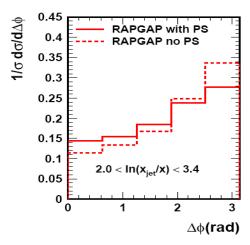
#### **NLO predictions**

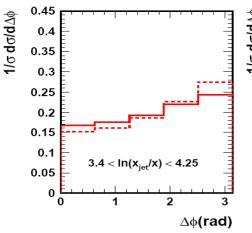
- shape of Δφ distributions described, but central value too low
- large scale uncertainty ( of up to 50% ) indicates importance of higher orders

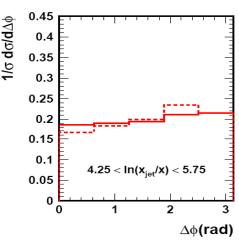
#### **NLOJET++**

PDF : CTEQ6.6,  $\alpha_S(M_Z)=0.118$ 

renormalisation and factorisation scales:


$$\mu_{r}^{\,2} \ = \ \mu_{f}^{\,2} \ = \ \left(p^{2}_{\,T, \; fwdjet} \ + \ Q^{2}\,\right) \, / \, 2$$


theoretical uncertainty : factor 2 or  $1\!\!/\!_2$  applied to  $\mu_r$  and  $\mu_f$  scales simultaneously  $_{11}$ 

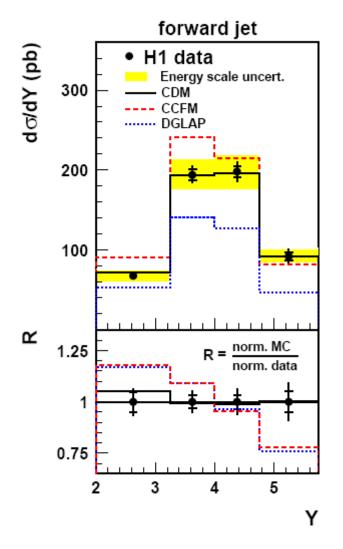

#### $\Delta \phi$ decorrelation: no discrimination between different evolution schemes

- Does forward jet originate from the hard matrix elements? No!
   Studies of parton to hadron correlation with the DGLAP-based RAPGAP model
  - → ~ 80% of forward jets produced by parton showers
- Why no dependence of  $\Delta \phi$  shape on parton shower ?

RAPGAP parton showers switched on / off



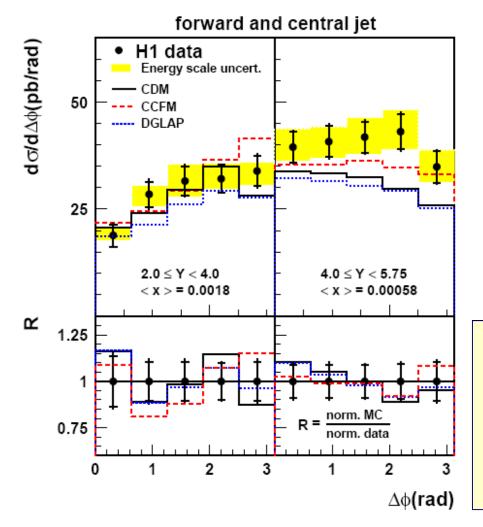





• The shape of  $\Delta \phi$  only slightly changed when the initial state parton shower is switched off

Decorrelation in  $\Delta \phi$  is governed by the phase space requirements (mainly by rapidity separation Y)

Normalisation of the cross sections depends on the evolution scheme


#### Forward jet cross section $d\sigma / dY$



- BFKL-like model CDM describes the data best
- DGLAP too low, especially at large Y
- CCFM (set A0) predictions to high at low x, but describe the data at large Y

 $Y = In(x_{jet} / x)$  rapidity separation between the most forward jet and the scattered positron

#### Forward and central jet cross sections d $\sigma$ / d $\Delta \phi$

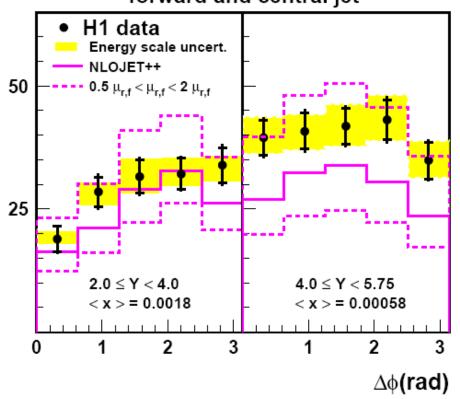


Subsample of events with
 forward jet + additional central jet
 (~8900 events)

$$p_{T,cenjet} > 4 \text{ GeV}$$
  
-1 <  $\eta_{cenjet} < 1$ 

$$\Delta \eta = \eta_{\text{fwdjet}} - \eta_{\text{cenjet}} > 2$$

( enhance radiation between the forward and central jet)


- Δφ still between the forward jet and the scattered positron
- at low Y all models describe the data reasonably well
- at high Y all models are below the measurements
  - ► with CCFM (set A0) closest to the data

# d⊲/d∆∮(pb/rad)

#### Forward and central jet cross sections d $\sigma$ / d $\Delta \phi$

#### Comparison to NLO $(O(\alpha_s^2))$ predictions

#### forward and central jet



#### **NLO predictions**

- at low Y reasonable description of the data
- at high Y, central value too small but the data still within theory uncertainty
- large scale uncertainty

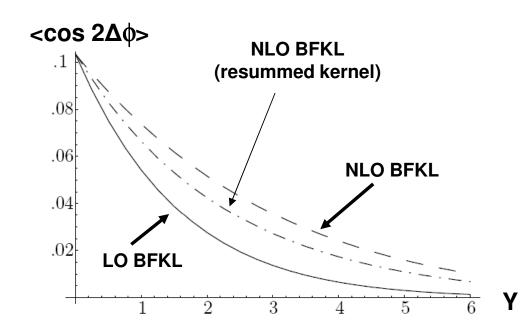
   ( of up to 40% )
   indicates importance of higher order contributions

#### **NLOJET++**

PDF : CTEQ6.6,  $\alpha_S(M_Z)=0.118$ 

$$\mu_r^2 = \mu_f^2 = (0.5 (p_{T, \text{ fwdjet}} + p_{T, \text{ cenjet}})^2 + Q^2) / 2$$

#### **Conclusions**


- Differential cross sections & normalised distributions have been measured as a function of  $\Delta \phi$  and the rapidity separation Y, between the forward jet and the scattered positron
- Cross sections are best described by the BFKL-like model CDM
- DGLAP-based RAPGAP model is substantially below the data
- The CCFM model gives a reasonable description of the data but shows sizeable sensitivity to uPDF
- The shape of  $\Delta \phi$  distributions is well described by MC models based on different QCD evolution schemes
- NLO DGLAP predictions are in general below the data, but still in agreement with the large theoretical uncertainties

#### backup

#### Forward jet production at NLO BFKL

#### S. Vera and F. Schwennsen, Phys. Rev. D77 (2008) 014001

BFKL kernel at NLO accuracy, jet vertex & photon impact factor using LO approximation



### Results for forward jets with ZEUS cuts

$$20 < Q^{2} < 100 \text{ GeV}^{2}$$
 $0.05 < y < 0.7$ 
 $4.10^{-4} < x_{Bj} < 5.10^{-3}$ 
 $0.5 < p_{t}^{2} / Q^{2} < 2.0$ 

$$\begin{split} \Delta \varphi &= \varphi_{el} - \varphi_{fwdjet} \\ Y &= In(|x_{jet}|/|x_{BJ}|) - evolution \ length \\ in \ BFKL \ formalism \end{split}$$

- The forward jet is more decorrelated from the scattered lepton for larger rapidity difference Y (center of mass energy)
- The azimuthal angle correlations increase when HO corrections are included for a fixed value of Y

#### **Systematic uncertainties**

|                                        | dσ/d∆φ<br>fj | dσ/d∆φ<br>fj + cj | dσ/dY |
|----------------------------------------|--------------|-------------------|-------|
| Model dependence<br>(CDM,Rapgap)       |              | 2 - 6%            |       |
| LAr hadronic en. scale (±4%)           |              | 7 – 12%           |       |
| Spacal em en. scale (±1%)              |              | below 3%          |       |
| Angle of scattered electron (± 1 mrad) |              | negligible effect |       |
| Trigger                                |              | 2 - 4%            |       |
| Luminosity                             |              | 1.5%              |       |
| Total                                  |              | 11 – 12%          |       |

#### $\Delta \phi$ decorrelation :

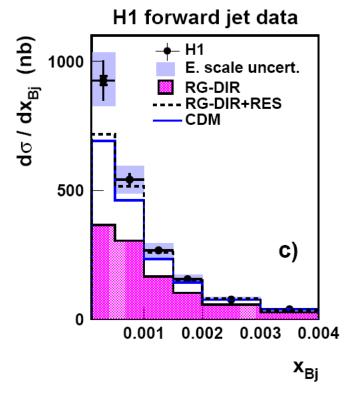
#### no discrimination between different evolution schemes

forward jet originates from the hard matrix elements ?
 ( similar in used MC models)

Studies of parton to hadron correlation with the DGLAP-based RAPGAP model:

▶ define "distance measure" ∆R between parton jet and hadron jet

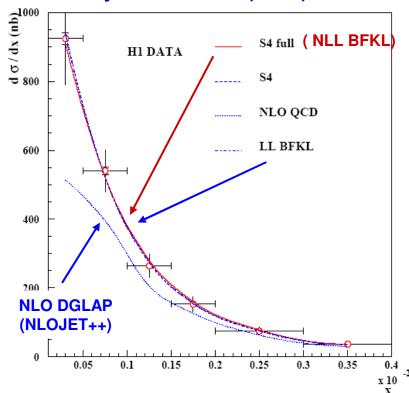
$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \Phi)^2}$$


 $\Delta R < 0.5$  hadron jet is correlated to parton from ME / from parton shower

#### Y bin

#### forward jet originated from PS

| bin no. 1 (2 < Y < 3.4) | 51.9% |
|-------------------------|-------|
|-------------------------|-------|


#### H1 data: Eur. Phys. J. C46 (2006)27



LO DGLAP (RG-DIR) below the data

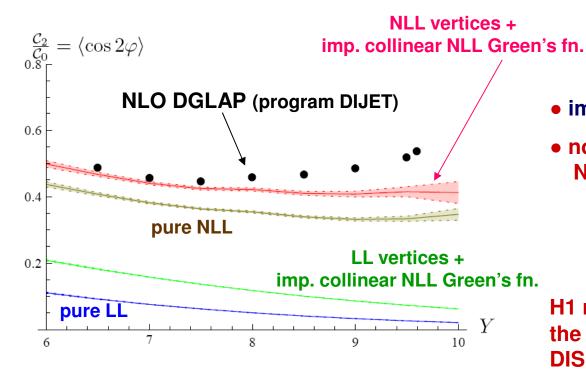
CDM model and DGLAP resolved photon model (RG-DIR+RES) closest to the data, however the data are still below predictions at low x

#### BFKL calulations Kepka, Royon, Marquet & Peschanski Phys. Lett. B665 (2007) 236



NLO DGLAP below the data at low x

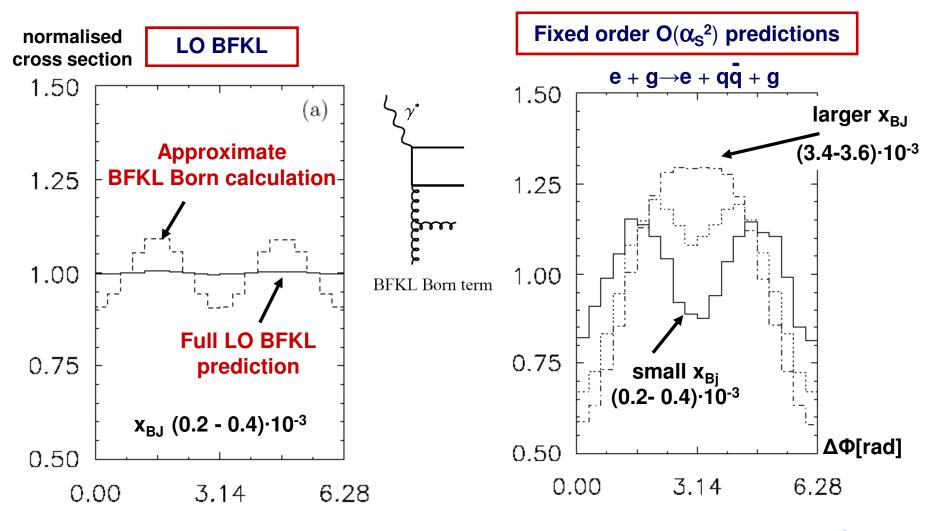
Difference between LL-BFKL and NLL-BFKL ( NLL BFKL kernel + free normalisation parameter ) is very small


#### **Mueller- Navelet jets at LHC – complete NLL BFKL calculations**

Colferai, Schwennsen, Szymanowski & Wallon, JHEP 12(2010)026

next-to-leading corrections to the Green's function and to the Mueller-Navelet vertices

LHC 
$$\sqrt{S}$$
 = 14 TeV,  $p_{T,jet1}$  = 35 GeV,  $p_{T,jet2}$  = 50 GeV


Azimuthal correlation 
$$\langle \cos 2\phi \rangle = \langle \cos(2 \cdot (\phi_{jet1} - \phi_{jet2} - \pi)) \rangle$$



- importance of NLL vertex corrections
- no significant difference between NLL BFKL and NLO DGLAP

H1 measurements → the electron-forward jet decorrelation in DIS does not discriminate between different evolution schemes

#### Forward jets in DIS, Bartels et al., 1996, $\Delta \Phi = \Phi_{el} - \Phi_{jet}$ in the LAB frame



BFKL Born - clear maximum at  $\Delta \Phi = \pi/2$ Full LO BFKL – no  $\Phi$  dependence

small  $x_{BJ}$  – fixed order  $O(\alpha_s^2)$  and BFKL Born predictions are similar (max. at  $\Delta\Phi \sim \pi/2$ )