Multidimensional Hadron Attenuation

Gevorg Karyan
(On behalf of the HERMES Collaboration)

A.I. Alikhanyan National Science Laboratory
Yerevan, Armenia
\[Q^2 \equiv -q^2 = (k - k')^2 \]
SIDIS

\[Q^2 \equiv -q^2 = (k - k')^2 \]

\[\nu = E - E' \]
\[Q^2 \equiv -q^2 = (k - k')^2 \]

\[\nu = E - E' \]

\[W^2 = (M_N + q)^2 \]
\[Q^2 \equiv -q^2 = (k - k')^2 \]
\[\nu = E - E' \]
\[W^2 = (M_N + q)^2 \]
\[x_{Bj} = \frac{Q^2}{2M_N \nu} \]
\[Q^2 \equiv -q^2 = (k - k')^2 \]

\[\nu = E - E' \]

\[W^2 = (M_N + q)^2 \]

\[x_{Bj} = \frac{Q^2}{2M_N \nu} \]

\[z_h = \frac{E_h}{\nu} \]
\[Q^2 \equiv -q^2 = (k - k')^2 \]

\[\nu = E - E' \]

\[W^2 = (M_N + q)^2 \]

\[x_{Bj} = \frac{Q^2}{2 \cdot M_N \cdot \nu} \]

\[z_h = \frac{E_h}{\nu} \]

\[p_t: \text{ hadron momentum component transverse to } \gamma^* \]
\[Q^2 \equiv -q^2 = (k - k')^2 \]

\[\nu = E - E' \]

\[W^2 = (M_N + q)^2 \]

\[x_B j = \frac{Q^2}{2M_N\nu} \]

\[z_h = \frac{E_h}{\nu} \]

\[p_t: \text{ hadron momentum component transverse to } \gamma^* \]

\[\sigma^{eN \rightarrow eh} \propto \sum_f e_f^2 \cdot q_f(x_B j, Q^2) \cdot \sigma^{eq \rightarrow eq} \cdot D_f^h(z_h, Q^2) \]
Nuclear Effects
Nuclear Effects

Partonic Effects
Nuclear Effects

Partonic Effects

- Gluon Radiation
- Parton Rescattering
Nuclear Effects

Partonic Effects

- Gluon Radiation
- Parton Rescattering

Hadronic Effects
Nuclear Effects

Partonic Effects
- Gluon Radiation
- Parton Rescattering

Hadronic Effects
- Colorless Prehadron Interaction
- Hadronic Final State Interaction
Nuclear Effects
Nuclear Effects

Partonic Effects

Hadronic Effects
Nuclear Effects

Partonic Effects

Hadronic Effects

Nuclear Attenuation

XX International Workshop on Deep-Inelastic Scattering and Related Subjects, Bonn, Germany — p. 5/12
Nuclear Effects

Partonic Effects

Hadronic Effects

\[R^h_A(\nu, Q^2, z, p_t^2, \phi) = \frac{N^h(\nu, Q^2, z, p_t^2, \phi)}{N^e(\nu, Q^2)} A \left(\frac{N^h(\nu, Q^2, z, p_t^2, \phi)}{N^e(\nu, Q^2)} \right)_D \]
Experiment

- e^\pm beam of 27.6 GeV energy
- Nuclear Target (D, Ne, Kr, Xe)
- Good Momentum Resolution ($\Delta p/p < 2\%$)
- Excellent Particle Identification Capabilities
Experiment

- e^\pm beam of 27.6 GeV energy
- Nuclear Target (D, Ne, Kr, Xe)
- Good Momentum Resolution ($\Delta p/p < 2\%$)
- Excellent Particle Identification Capabilities
Multidimensional representation of R_{hA}^h
Results

Multidimensional representation of R_A^h

- ν for three z slices
- z for three ν slices
- p_t^2 for three z slices
- z for three p_t^2 slices
Results

Multidimensional representation of R_A^{h}

- ν for three z slices
- z for three ν slices
- p_t^2 for three z slices
- z for three p_t^2 slices

Results

\[R_A^h \]

\(\text{Ne} \)
\(\text{Kr} \)
\(\text{Xe} \)

\(z = 0.2 - 0.4 \)
\(z = 0.4 - 0.7 \)
\(z > 0.7 \)

\(\pi^+ \)
\(\text{K}^+ \)
\(p \)

\(v \ [\text{GeV}] \)
Results

XX International Workshop on Deep-Inelastic Scattering and Related Subjects, Bonn, Germany – p. 8/12
Attenuation is larger for heavy nuclei.
Results

Attenuation is larger for heavy nuclei.
$R_{K^+}^A$ is different from $R_{\pi^+}^A$, $R_{\pi^-}^A$ and $R_{K^-}^A$.

XX International Workshop on Deep-Inelastic Scattering and Related Subjects, Bonn, Germany – p. 8/12
Attenuation is larger for heavy nuclei. $R^h_{K^+}$ is different from R^{π^+}, R^{π^-} and R^{K^-}. Protons behave very differently from the other hadrons.
Results

$n = 4-12$ GeV
$n = 12-17$ GeV
$n = 17-23.5$ GeV

p^+
p^-
K^+
K^-

R_A^h vs z for Ne, Kr, and Xe at different energy ranges.
Results

\[R_A^{K^+} \text{ is different from } R_A^{K^-} \text{ at small values of } z. \]
\(R^{K^+} \) is different from \(R^{K^-} \) at small values of \(z \).

Strong dependence of \(R^p \) on heavy nuclei.
Results

XX International Workshop on Deep-Inelastic Scattering and Related Subjects, Bonn, Germany – p. 10/12
Results

Reduction of R_A^h with increasing of z.

XX International Workshop on Deep-Inelastic Scattering and Related Subjects, Bonn, Germany – p. 10/12
Results

Reduction of R_{A}^{h} with increasing of z.
Strong dependence of R_{A}^{h} on p_t^2 at small values of z for heavy nuclei.
Results

\[R_A^h \]

\begin{align*}
\text{Ne} & \quad z = 0.2-0.4 \\
\text{Kr} & \quad z = 0.4-0.7 \\
\text{Xe} & \quad z > 0.7
\end{align*}

\[p_t^2 \text{ [GeV}^2\text{]} \]

\[\pi^+ \]

\[K^+ \]
The Cronin effect is larger for protons.
The Cronin effect is larger for protons. It is suppressed for mesons in the highest z slice.
Multidimensional kinematic dependencies of R_A^h for π^+, π^-, K^+, K^-, p and \bar{p} on Ne, Kr and Xe targets.
Summary

- Multidimensional kinematic dependencies of R_A^h for π^+, π^-, K^+, K^-, p and \bar{p} on Ne, Kr and Xe targets.
- R_A^h is similar for π^+ and π^-.
Multidimensional kinematic dependencies of R_A^h for π^+, π^-, K^+, K^-, p and \bar{p} on Ne, Kr and Xe targets.

R_A^h is similar for π^+ and π^-.

Negatively charged kaons behave similarly to pions.
Summary

- Multidimensional kinematic dependencies of R^h_A for π^+, π^-, K^+, K^-, p and \bar{p} on Ne, Kr and Xe targets.
- R^h_A is similar for π^+ and π^-.
- Negatively charged kaons behave similarly to pions.
- ν dependence of R^K_A for positively charged kaons is different from $R^{\pi^+}_A$, $R^{\pi^-}_A$ and $R^{K^-}_A$ in different z slices.
Summary

- Multidimensional kinematic dependencies of R_A^h for π^+, π^-, K^+, K^-, p and \bar{p} on Ne, Kr and Xe targets.

- R_A^h is similar for π^+ and π^-.

- Negatively charged kaons behave similarly to pions.

- ν dependence of $R_A^{K^+}$ for positively charged kaons is different from $R_A^{\pi^+}$, $R_A^{\pi^-}$ and $R_A^{K^-}$ in different z slices.

- R_A^P for protons is very different compared with the other hadrons.