Properties and decays of b hadrons at DZero

Enrique Camacho on behalf of DZero Collaboration

XX International Workshop on Deep-Inelastic Scattering and Related Subjects

26-30 March 2012, University of Bonn

Outline

- 1 Tevatron and DØ Experiment
- **2** Part I: $\tau(\Lambda_b)$ in $\Lambda_b \to J/\psi \Lambda$
- **③** Part II: $f(b \to \Lambda_b) \cdot \mathcal{B}(\Lambda_b \to J/\psi\Lambda)$

イロト 不得 トイヨト イヨト

2/25

6 Conclusions

Tevatron and D0 Experiment

Experimental Setup:

B production at Tevatron Bd, Bs, Bc, B^{**} , Λ_b , Ξ_b , Ω_b , , , ...

Wide angle coverage:Muon chambers; $|\eta| < 2$ Tracking volume; $|\eta| < 3$

Special B-strengths:

Muon system Muon trigger (single and dimuon triggers) Tracking/Vertexing. $(\bigcirc \ \) \ (\bigcirc \) \ () \$

3/25

Part I

• Lifetime measurement: $\Lambda_b \rightarrow J/\psi \Lambda$

Experimental and theoretical status

 Precise predictions of b-hadron lifetimes are difficult to calculate. Ratios are predicted with fairly high accuracy by heavy quark effective theory (HQET)

イロト イポト イヨト イヨト

5/25

•
$$\frac{\tau_{\Lambda_b}}{\tau_{B_d}} = 0.88 \pm 0.05$$

• $c\tau_{\Lambda_b} \approx 378 - 423 \mu \text{m}$

Lifetime measurement: $\Lambda_b \rightarrow J/\psi \Lambda$

The transverse decay length

$$L_{xy} = \frac{\vec{L}_{xy} \cdot \vec{p}_T}{|p_T|}$$

The proper decay length (PDL), denoted by λ

$$\lambda = c\tau = \frac{L_{xy}}{(\beta\gamma)_{xy}} = L_{xy} \frac{M_{\Lambda_b}}{|\vec{p}_T^{\Lambda_b}|}$$

$$\mathcal{L} = \prod_{j=1}^{N} \left[f_s \mathcal{F}_s(m_j, \lambda_j, \sigma_j^{\lambda}) + (1 - f_s) \mathcal{F}_b(m_j, \lambda_j, \sigma_j^{\lambda}) \right]$$

Signal p.d.f.

- The mass, is modeled by a Gaussian function
- The λ, is modeled with a exponential decay convoluted with the resolution function
- σ^{λ} , is modeled by Gaussian functions

Background p.d.f.

- The mass, exponential(constant) for non-prompt (prompt) component
- The λ , exponentials and Gaussian resolution
- σ^λ, is modeled by exponential functions convoluted with a Gaussian state function → (B) + (E) + (

7 / 25

Data yields

Invariant mass distributions for Λ_b and B_d

regions contaminated with partially reconstructed b hadrons

Proper decay length distributions for Λ_b and B_d

Systematic uncertainties and the measurement of the Λ_b and B_d lifetimes

Source	$\Lambda_b (\mu m)$	$B_d \ (\mu m)$
Mass model	2.2	6.4
Proper decay length model	7.8	3.7
Proper decay length uncertainty	2.5	8.9
Partially reconstructed B decays	2.7	1.3
$B_s \rightarrow J/\psi K_s^0$	-	0.4
Aligment	5.4	5.4
Total (in quadrature)	10.4	12.9

Using the full data sample collected by the DØ Collaboration,

$$\begin{array}{|c|c|c|c|c|c|} \hline & \tau(\Lambda_b) = 1.303^{+0.076}_{-0.074}(\text{stat}) \pm 0.035(\text{syst}) \\ \hline & \tau(B_d) = 1.508^{+0.026}_{-0.025}(\text{stat}) \pm 0.043(\text{syst}) \\ \hline \end{array}$$

Calculating the ratio of lifetimes

$$\frac{\tau(\Lambda_b)}{\tau(B_d)} = 0.864^{+0.053}_{-0.051} \text{ (stat)} \pm 0.033 \text{ (syst)}$$

Measurement of the Λ_b and B_d lifetimes

• $\tau(\Lambda_b)$ is consistent with the world-average 1.425 ± 0.032 ps and with previous DØ measurements

• The method was thoroughly tested in $B_d \rightarrow J/\psi K_s^0$ decay:

 $\tau(B_d) = 1.508^{+0.026}_{-0.025} \text{ (stat)} \pm 0.043 \text{ (syst)}$

in very good agreement with the W.A., $\tau(B_d) = 1.519 \pm 0.007$ ps.

Part II

• Measururement f $f(b \to \Lambda_b) \cdot \mathcal{B}(\Lambda_b \to J/\psi \Lambda)$

How to get the $f(b \to \Lambda_b) \cdot \mathcal{B}(\Lambda_b \to J/\psi \Lambda)$?

We can compute the σ_{rel} :

$$\sigma_{rel} \equiv \frac{f(b \to \Lambda_b) \cdot \mathcal{B}(\Lambda_b \to J/\psi\Lambda)}{f(b \to B^0) \cdot \mathcal{B}(B^0 \to J/\psiK_s^0)} = \epsilon \cdot \frac{N_{\Lambda_b \to J/\psi\Lambda}}{N_{B^0 \to J/\psiK_s^0}} \cdot \frac{\mathcal{B}(K_s^0 \to \pi^+\pi^-)}{\mathcal{B}(\Lambda \to p\pi^-)}$$

where ϵ is the ratio of reconstruction efficiencies $\frac{\epsilon_{B^0 \to J/\psi K_S^0}}{\epsilon_{\Lambda_b \to J/\psi \Lambda}}$, obtained from Monte Carlo. Samples:

• Two samples to analyse: $\Lambda_b\to J/\psi\Lambda~~\&~B_d\to J/\psi K^0_s~$ (normalization channel)

- How to get the signal?
 - 1 Dimuons + 2 tracks + Quality Cuts
 - 2 + Optimized Cuts

- ロト - 日下 - モト - モト

Dimuons + 2 tracks + Quality Cuts

- Two Muons
 - Quality cuts
 - $p_T(\mu) > 2 \text{ GeV}/c;$
 - $|\eta(\mu)| < 2;$
- Two oppositely-charged tracks
- $p_T(\Lambda_b, B_0) > 5 \text{ GeV}/c$
- $p_T(J/\psi) > 3 \text{ GeV}/c$
- The Armenteros-Podolanski technique is used to check if we have removed background coming from the misidentified Λ and K_S^0 .

DØ, L=6.1 fb[.] N_{k:} ~ 275K

/ents/0.003(GeV/

$$\alpha = \frac{q^{+}{}_{L} - q^{-}{}_{L}}{q^{+}{}_{L} + q^{-}{}_{L}}$$

+ Optimized Cuts

	Decay	Parameter	Cut Value
		$c au/\sigma_{c au}$ (Λ)	> 4
		Length Decay XY (Λ)	> 0.8
	$\Lambda_b \rightarrow J/\psi \Lambda$	P_T (Λ)	> 1.6
N_{s}		$c au/\sigma_{c au}$ (Λ_b)	> 2
$S = \frac{1}{\sqrt{N-1}}$		$c au/\sigma_{c au}$ (K_S^0)	> 9
$\sqrt{N_s + N_b}$		Length Decay X $ ilde{Y}$ $(K^0_S$)	> 0.4
	$B_d \rightarrow J/\psi K_s^0$	$P_T (K_S^0)$	> 1
		$c au/\sigma_{c au}$ (B_d^+)	> 3

- In case of multiple candidates in a event, we keep the $\Lambda_b~~(B_d$) candidate per event with best vertex χ^2

Results & Systematic uncertainties

From Monte Carlo

$$\epsilon = \frac{\epsilon_{B^0 \to J/\psi K_S^0}}{\epsilon_{\Lambda_b \to J/\psi \Lambda}} = 2.37 \pm 0.05 ~(stat.)$$

The sources of systematic uncertainties are:

Test	Systematic uncertainty (%)	
Fit Model	5.5	
Signal Decay Model for B_0	2.0	
Background from $B_d~$ and $\Lambda_b~$	2.3	
Λ_b Polarization ($P_b \alpha_b = +1$)	7.2	
Total (in quadrature)	9.6	

 $\sigma_{rel} = \frac{f(b \to \Lambda_b) \cdot \mathcal{B}(\Lambda_b \to J/\psi\Lambda)}{f(b \to B^0) \cdot \mathcal{B}(B^0 \to J/\psi K_s^0)} = 0.345 \pm 0.034 \text{ (stat.)} \pm 0.033 \text{ (syst.)} \pm 0.003 \text{ (PDG)}$

 $f(b \to \Lambda_b) \cdot \mathcal{B}(\Lambda_b \to J/\psi\Lambda) = (6.01 \pm 0.60 \text{ (stat.)} \pm 0.58 \text{ (syst.)} \pm 0.28 \text{ (PDG)}) \times 10^{-5}$

The current world average for this product from the PDG is $(4.7 \pm 2.3) \times 10^{-5}$. This result represents a reduction by a factor of ~ 3 of the uncertainty with respect to $0.9 \le 0.01$ the W.A.

- We need an external measurement of $f(b \rightarrow \Lambda_b)$. We are not aware of any direct measurement of this quantity
- Making some assumptions

•
$$f(b \to b_{baryon}) \approx f(b \to \Lambda_b) + f(b \to \Xi_b^-) + f(b \to \Xi_b^0)$$

16/25

•
$$f(b \to \Xi_b^-) \approx f(b \to \Xi_b^0)$$

• $\frac{f(b \to B_s)}{f(b \to B^0)} \approx \frac{f(b \to \Xi_b^-)}{f(b \to \Lambda_b)}$

- Then $\mathcal{B}(\Lambda_b \to J/\psi \Lambda) \approx (11.08 \pm 3.31) \times 10^{-4}$
- Same to the W.A. would lead to $\mathcal{B}(\Lambda_b \to J/\psi\Lambda) \approx (8.67 \pm 4.84) \times 10^{-4}$

Part III

• Measurement of the branching fraction $\mathcal{B}(B_s \to J/\psi f_0 \ , B_s \to J/\psi \phi \)$

Motivation

- B_s mesons are important particles created at high rates in hadron collisions
- Many of the decays of B_s mesons are important because they allow the study of possible asymmetries in the phenomenology of these particles
- Same tree diagram as $B_s \rightarrow J/\psi \phi$
- Sensitive to $\Delta \Gamma_s$ and ϕ_s

Event Selection

- We require two reconstructed muons of opposite charge.
- Form J/Ψ candidates
- Form f₀(980) (\$\$\phi\$) candiates from opposite charged tracks assuming the tracks are pions (kaons).
- Form B_s candidates from J/ Ψ and $f_0(980)$ (ϕ) candidates.
 - Make cuts in the kinematic and the mass windows:
 - Pion (Kaon) leading $P_T > 1.4 GeV$
 - $B_s P_T > 5 GeV$,
 - $f_0(980) P_T > 1.6 GeV$
 - $0.91 GeV < M_{\pi^+\pi^-} < 1.05 GeV$ (When J/ Ψ $f_0(980)$)
 - $1.01 GeV < M_{K^+K^-} < 1.03 GeV$ (When J/ $\Psi \phi$)

イロト イポト イヨト イヨト

19/25

Background suppression

BDT used to suppress background:

• Prompt $p\bar{p} \rightarrow J/\Psi X$

• b-inclusive $b\bar{b} \rightarrow J/\Psi X$

伺い イヨト イヨト

Data yields

• $\mu^+\mu^-\pi^+\pi^-$ and $\pi^+\pi^-$ mass distribution

• $\mu^+\mu^-K^+K^-$ mass distribution

- Generated MC samples for both $J/\psi f_0$ and $J/\psi \phi$

•
$$\epsilon = \frac{\epsilon_{reco}^{B_s \to J/\psi\phi}}{\epsilon_{reco}^{B_s \to J/\psi f_0(980)}} = 1.20 \pm 0.04$$

Uncertainties in the ratio of branching fraction are:

Source	Uncertainty (%)
Statistical	14.9
Systematic from fitting	15.0
Systematic from different MC samples	8.58

Ratio of Branching fractions

$$R = \frac{\mathcal{B}(B_s \to J/\psi f_0(980); f_0(980) \to \pi^+\pi^-)}{\mathcal{B}(B_s \to J/\psi \phi; \phi \to K^+K^-)}$$
$$= \frac{N_{B_s \to J/\psi f_0(980)}}{N_{B_s \to J/\psi \phi}} \times \frac{\epsilon_{reco}^{B_s \to J/\psi \phi}}{\epsilon_{reco}^{B_s \to J/\psi f_0(980)}}$$

 $R = 0.210 \pm 0.032 (stat) \pm 0.036 (syst)$

Conclusions

Three new measurements

Conclusions

• Using the full DØ dataset we have measured the Λ_b lifetime in the exclusive decay $J/\Psi\Lambda$. We found:

 $\tau(\Lambda_b) = 1.303^{+0.076}_{-0.074} \text{ (stat)} \pm 0.035 \text{ (syst)}$

consistent with the previous DØ measurements and the W.A., $1.425\pm0.032~\mathrm{ps}$

• A new measurement of $f(b \to \Lambda_b) \cdot \mathcal{B}(\Lambda_b \to J/\psi \Lambda)$ has been performed and it is found to be:

 $f(b \to \Lambda_b) \cdot \mathcal{B}(\Lambda_b \to J/\psi\Lambda)$ = (6.0 ± 0.6 (stat.) ± 0.6 (syst.) ± 0.3(PDG)) × 10⁻⁵

• A new measurement of ${\cal B}(B_s o J/\psi f_0 \ , B_s o J/\psi \phi$)

 $\frac{\mathcal{B}(B_s \to J/\psi f_0(980); f_0(980) \to \pi^+\pi^-)}{\mathcal{B}(B_s \to J/\psi \phi; \phi \to K^+K^-)} = 0.210 \pm 0.032 \text{ (stat)} \pm 0.036 \text{ (syst.)}$

25 / 25

• More results comming