Testing NRQCD factorization with J/ψ yield and polarization

Bernd Kniehl

II. Institut für Theoretische Physik, Universität Hamburg

XX International Workshop on Deep-Inelastic Scattering and Related Subjects, Bonn, 26–30 May 2012

In collaboration with Mathias Butenschön Phys. Rev. Lett. **104**, 072001 (2010) Phys. Rev. Lett. **106**, 022003 (2011) Phys. Rev. D **84**, 051501(R) (2011) Phys. Rev. Lett. **107**, 232001 (2011) arXiv:1201.1872 [hep-ph], Phys. Rev. Lett. (in press)

Technology

Global fit Polarize

Polarized photoproduction

Polarized hadroproduction

Summary 00

CERN Courier, Volume 52, Issues 1 and 2

Introduction	Technology	Global fit	Polarized photoproduction	Polarized hadroproduction	Summary
000000	0	00000000	00000000	00	00

- **Introduction:** Heavy quarkonia, NRQCD, J/ψ production
- **Technology**: Treatment of divergences, automation
- **Global fit:** Unpolarized J/ψ production
- Polarized photoproduction: HERA
- Polarized hadroproduction: Tevatron vs. LHC

Outline

Introduction	Technology	Global fit	Polarized photoproduction	Polarized hadroproduction	Summary
00000	0	00000000	0000 000 0	00	00
	-				

Heavy Quarkonia

Heavy quarkonia: Bound states of heavy quark and its antiquark.

- Charmonia (*cc*) and Bottomonia (*bb*)
- Top decays too fast for bound state.

n ^{2S+1} L _J	Name	Mass
1 ¹ S ₀	η_c	2980 MeV
1 ³ S ₁	J/ψ	3097 MeV
1 ³ P ₀	χ_{c0}	3415 MeV
1 ³ P ₁	Xc1	3511 MeV
1 ¹ P ₁	hc	3526 MeV
1 ³ P ₂	Xc2	3556 MeV
2 ¹ S ₀	η_c'	3637 MeV
2 ³ S ₁	ψ'	3686 MeV

Charmonium spectrum (cc):

- 1974: Discovery of *J*/ψ:
 First observation of heavy quarks
- Long lifetime of *cc*: Spectrum and radiative transitions seen ⇒ Potential models
- Calculation of energy spectrum: Challenge for lattice QCD.
- Production and decay rates: One of first applications for perturbative QCD.

Color-singlet model vs. NRQCD factorization

Classic approach: Color-singlet model

- $c\overline{c}$ pair in physical color-singlet state, e.g. $c\overline{c}[{}^{3}S_{1}^{[1]}]$ for J/ψ .
- Nonperturbative information in J/ψ wave function at origin.
- Predicted cross section factor 10¹-10² below Tevatron data.

NRQCD factorization:

- Rigorous effective field theory [Bodwin, Braaten, Lepage]
- Based on factorization of soft and hard scales (Scale hierarchy: Mv², Mv ≪ Λ_{QCD} ≪ M)
- Theoretically consistent: no leftover singularities.
- NNLO proof of factorization in fragmentation [Nayak, Qiu, Sterman]
- Can explain hadroproduction at Tevatron.

NRQCD factorization in a nutshell

Factorization theorem: $\sigma_{J/\psi} = \sum_{w} \sigma_{c\overline{c}[n]} \cdot \langle O^{J/\psi}[n] \rangle$

- *n*: every possible Fock state, including color-octet states.
- $\sigma_{c\overline{c}[n]}$: production rate of $c\overline{c}[n]$, calculated in perturbative QCD.
- (O^{J/ψ}[n]): long-distance matrix elements (LDMEs), nonperturbative, extracted from experiment, universal?

Scaling rules: LDMEs scale with relative velocity v ($v^2 \approx 0.2$). For J/ψ :

• Double expansion in v and α_s .

• Leading term in v ($n = {}^{3}S_{1}^{[1]}$) corresponds to color-singlet model.

J/ψ Production: NRQCD vs. Experiment

Hadroproduction at Tevatron:

Photoproduction at HERA:

Importance of color octet unclear

Our work: NRQCD calculation for photo- and hadroproduction and e^+e^- annihilation at NLO

 \implies Establish universality of long distance matrix elements.

Production of J/ψ : NRQCD vs. Experiment (cont.)

Electroproduction at HERA:

Evidence of color-octet mechanism at LO

Production of J/ψ : NRQCD vs. Experiment (cont.)

Polarization at HERA:

$$\frac{d\sigma}{d\cos\vartheta} \propto 1 + \lambda_{\vartheta}\cos^2\vartheta$$
Puzzling situation: LO NRQCD and NLO CSM fail
$$\implies \text{How about NLO NRQCD?}$$

Technology

Global fit Polarized photoproduction

Organisation of our Calculation

FeynArts: Generate Feynman diagrams

Mathematica script: Apply color projectors. Evaluate color factors with FeynCalc.

FORM: Apply spin projectors. Treat squared amplitudes.

Two methods for virtual corrections:

FORM: Perform our tensor reduction \implies Scalar integrals

FORM: Use Integration by parts relations \implies Master integrals (uses AIR)

FORM: Cancel scalar products by denominators. Neg. propagator powers. Directly apply IBP relations (uses AIR). \implies Master integrals (Not for ¹S₀ spin singlet state)

Mathematica script: Simplify results due to kinematics (Size dramatically reduced)

Analytical check: Results of two methods equal. All divergences cancel.

Numerical evaluation:

FORTRAN: Phase space integrations with VEGAS. Phase space slicing method.

Global fit at NLO in NRQCD

Fit CO	LDMEs to	all available	world data	on J/ψ inclusive product	ion:		
type	\sqrt{s}	collider	collaboration	reference			
рр	200 GeV	RHIC	PHENIX	PRD82(2010)012001			
р <mark>р</mark>	1.8 TeV	Tevatron I	CDF	PRL97(1997)572; 578			
pp	1.96 TeV	Tevatron II	CDF	PRD71(2005)032001			
рр	7 TeV	LHC	ALICE	NPB(PS)214(2011)56			
			ATLAS	PoS(ICHEP 2010)013			
			CMS	EPJC71(2011)1575			
			LHCb	EPJC71(2011)1645			
γp	300 GeV	HERA I	H1, ZEUS	EPJ25(2002)25; 27(2003)173	3		
γp	319 GeV	HERA II	H1	EPJ68(2010)401			
ŶΥ	197 GeV	LEP II	DELPHI	PLB565(2003)76			
e+ e-	10.6 GeV	KEKB	BELLE	PRD79(2009)071101			
• Fit valu	es:						
10 ⁻² G	eV ^{3+2L}						
⟨𝒴(¹;	S ^[8] _{0.1}) 4	$.97 \pm 0.44$					
$\langle \mathscr{O}(^3;$	S ^[8])〉 0.2	224 ± 0.059					
⟨ <i>∅</i> (³)	$\langle \mathscr{O}({}^{3}P_{0}^{[8]}) \rangle = -1.61 \pm 0.20$						
• $\chi^2/d.o.$	• χ^2 /d.o.f. = 857/194 = 4.42 for default prediction						
• $\propto v^4 \langle 0$	$\langle {}^{3}S_{1} \rangle \sim NF$	RQCD velocity	scaling rules $$	/			

 Introduction
 Technology
 Global fit
 Polarized photoproduction
 Polarized hadroproduction
 Summary

 000000
 0
 0
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0
 00
 0
 00

Comparison with world data

Polarized photoproduction

Polarized hadroproduction

Summary

Comparison with RHIC and Tevatron

- Data well described by CS+CO at NLO.
- CS orders of magnitudes below data.

Polarized hadroproduction Summary

Comparison with Tevatron (cont.)

Relative importance of CO processes:

- Short-distance $\sigma(c\overline{c}[{}^{3}P_{J}^{[8]}]) < 0$ for $p_{T} \gtrsim 7$ GeV.
- But: Short-distance cross sections and LDMEs unphysical (NRQCD scale and scheme dependence) ~> No problem!

Technology

Global fit Polarize

Polarized photoproduction

Polarized hadroproduction

Comparison with ATLAS at LHC

- Data well described by CS+CO at NLO.
- CS orders of magnitudes below data.

Summary

Comparison with ATLAS (after fit) NPB850(2011)387

Technology

Global fit Polarize

Polarized photoproduction

Polarized hadroproduction

Comparison with CMS at LHC

- Data well described by CS+CO at NLO.
- CS orders of magnitudes below data.

Summarv

Comparison with ALICE and LHBb at LHC

- Data well described by CS+CO at NLO.
- CS orders of magnitudes below data.

Comparison with LHBb at LHC (cont.)

• CS orders of magnitudes below data.

 Introduction
 Technology
 Global fit
 Polarized photoproduction
 Polarized hadroproduction
 Summary

 0000000
 0
 00000000
 00
 00
 00

Comparison with ZEUS at HERA I (1)

- $W = \gamma p$ CM energy.
- z = fraction of γ energy going to J/ψ in p rest frame.
- Singularity for $z \rightarrow 1$ eliminated by shape function in SCET.
- Data well described by CS+CO at NLO.
- CS factor of 3–5 below the data.

Introduction Technology Global fit Polarized photoproduction Polarized hadroproduction Summary

Comparison with ZEUS at HERA I (2)

- Data for 0.4 < z < 0.9 exhausted by direct photoproduction.
- Resolved photoproduction only relevant for $z \leq 0.4$.

Introduction Technology Global fit Polarized photoproduction Polarized hadroproduction Summary

Comparison with ZEUS at HERA I (3)

- $\langle \mathscr{O}({}^3P_0^{[8]}) \rangle < 0 \rightsquigarrow {}^3P_0^{[8]}$ contribution negative.
- Negative interference with ${}^{1}S_{0}^{[8]}$ contribution beneficial.
- ${}^{3}S_{1}^{[8]}$ contribution negligible here.

Technology

Global fit Polarize

Polarized photoproduction

Polarized hadroproduction

Summary 00

Comparison with H1 at HERA I

- Data well described by CS+CO at NLO.
- CS factor of 3–5 below data.

Technology

Global fit Polarize

Polarized photoproduction

Polarized hadroproduction

Summary

Comparison with H1 at HERA II

- Data well described by CS+CO at NLO.
- CS factor of 3–5 below the data.

luction Tech

Technology

Global fit Polarized

Polarized photoproduction

Polarized hadroproduction Summary

Comparison with DELPHI at LEP II

- Agreement with NRQCD at NLO worse than 2002 with LO.
- Just 16 DELPHI events with $p_T > 1$ GeV.
- No results from ALEPH, L3, OPAL.
- Data exhausted by single-resolved contribution.

Technology

Global fit Polarize

Polarized photoproduction

Polarized hadroproduction Summary

Comparison with BELLE at KEKB

• At NLO, both CSM and NRQCD agree with data.

Polarized J/ψ photoproduction

Polarization observables in spin density matrix formalism:

$$\begin{split} \lambda_{\theta} &= \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}, \qquad \lambda_{\phi} = \frac{d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}}, \qquad \lambda_{\theta\phi} = \frac{\sqrt{2}\text{Re}\,d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}}\\ \lambda &= 0, +1, -1: \text{ unpolarized, transversely and longitudinally porarized.} \end{split}$$

Technology

Global fit Polarize

Polarized photoproduction

Comparison with H1 and ZEUS

- No z cut on ZEUS data ~> diffractive production included.
- Perturbative stability in NRQCD higher than in CSM.
- J/ψ preferrably unpolarized at large p_T .

Summarv

Technology

Global fit Polari

Polarized photoproduction

Comparison with H1 and ZEUS (cont.)

- Large scale uncertainties due to low cut $p_T > 1$.
- Overall χ² w.r.t. default prediction more than halved by going from CSM to NRQCD.

Summarv

Technology

Global fit Polarize

Polarized photoproduction

Comparison with CDF and ALICE

- CDF I and II data mutually inconsistent for $p_T < 12$ GeV.
- CDF J/ψ polarization anomaly persits at NLO (10–20 σ).
- 4/8 ALICE points agree w/ NLO NRQCD within errors, others $<2\sigma$ away.

Technology

Global fit Pola

Polarized photoproduction

Polarized hadroproduction

Decomposition for ALICE

- $d\sigma_{\text{unpol}} = d\sigma_{00} + 2d\sigma_{11}$; $d\sigma_{1,-1}$ auxiliary.
- Previously unknown ${}^{3}P_{J}^{[8]}$ NLO correction significant.

Summarv

Introduction	Technology O	Global fit	Polarized photoproduction	Polarized hadroproduction	Summary ●O
Summ	arv				

- NRQCD provides rigorous factorization theorem for production and decay of heavy quarkonia; predicts:
 - existence of CO states;
 - universality of LDMEs.
- Previous LO tests not conclusive.
- Here: first global analysis of unpolarized- J/ψ world data at NLO.
- Hadro- and photoproduction: striking evidence of NRQCD vs. CSM.
- $\gamma\gamma$ scattering, e^+e^- annihilation: not conclusive yet.
- Contributions from feed-down and *B* decays throughout small against theoretical uncertainties.
- Hadroproduction data alone cannot reliably fix all 3 CO LDMEs and give misleading results for their linear combinations; cf. Ma et al., PRL106(2011)042002; PRD84(2011)114001; MB & BK, AIPConfProc1343(2011)409.

Introduction	Technology	Global fit	Polarized photoproduction	Polarized hadroproduction	Summary
000000	0	0000000	0000 000 0	00	00
Summ	nary (con	t.)			

- Case for NRQCD less strong in polarized J/ψ photoproduction at HERA.
- Polarized J/ψ hadroproduction at Tevatron in severe conflict with NLO NRQCD, while first LHC data nicely agree.
- NRQCD factorization in jeopardy! ~> Hot topic, especially in lack of BSM signals!

Backup Slides

Dependence on low- p_T cut: Global fit

Vary low- p_T cut on pp and $p\overline{p}$ data:

	$p_T > 1 \text{ GeV}$	$p_T > 2 \text{ GeV}$	$p_T > 3 \text{ GeV}$	$p_T > 5 \text{ GeV}$	$p_T > 7 \text{ GeV}$
Data left	148 points	134 points	119 points	86 points	60 points
$\langle \mathscr{O}^{J/\psi}({}^1S_{0,1}^{[8]}) \rangle$	5.68 ± 0.37	4.25 ± 0.43	4.97 ± 0.44	4.92 ± 0.49	3.91 ± 0.51
$\langle \mathscr{O}^{J/\psi}({}^3S_{1}^{[8]}) angle$	0.90 ± 0.50	2.94 ± 0.58	2.24 ± 0.59	2.23 ± 0.62	2.96 ± 0.64
$\langle \mathscr{O}^{J/\psi}({}^3P_0^{[8]}) angle$	-2.23 ± 0.17	-1.38 ± 0.20	-1.61 ± 0.20	-1.59 ± 0.22	-1.16 ± 0.23

→ Global fit insensitive to low- p_T cut on pp and $p\overline{p}$ data as long as γp , $\gamma \gamma$ (74 points with $p_T > 1$ GeV), and e^+e^- data (1 point) are retained.

Vary low- p_T cut on γp and $\gamma \gamma$ data:

	$p_T > 1 \text{ GeV}$	$p_T > 2 \text{ GeV}$	$p_T > 3 \text{ GeV}$	$p_T > 5 \text{ GeV}$	$p_T > 7 \text{ GeV}$
Data left	74 points	30 points	15 points	5 points	1 points
$\langle \mathscr{O}^{J/\psi}({}^1S_{0,1}^{[8]})\rangle$	4.97 ± 0.44	$5.10 \!\pm\! 0.92$	4.05 ± 1.17	5.44 ± 1.27	9.56 ± 1.59
$\langle \mathscr{O}^{J/\psi}({}^3S_{1}^{[8]}) \rangle$	2.24 ± 0.59	2.11 ± 1.22	3.52 ± 1.56	1.73 ± 1.68	-3.66 ± 2.09
$\langle \mathscr{O}^{J/\psi}({}^3P_0^{[8]}) angle$	-1.61 ± 0.20	-1.58 ± 0.48	-0.97 ± 0.63	-1.63 ± 0.68	-3.73 ± 0.83

→ Global fit insensitive to moderate low- p_T cut on γp and $\gamma \gamma$ data as long as pp and $p\overline{p}$ data (119 points with $p_T > 3$ GeV), and e^+e^- data (1 point) are retained.

Dependence on low- p_T cut: Fit to pp and $p\overline{p}$ data only

Vary low- p_T cut:								
Data left	$p_T > 1 \text{ GeV}$ 148 points	$p_T > 2 \text{ GeV}$ 134 points	$p_T > 3 \text{ GeV}$ 119 points	$p_T > 5 \text{ GeV}$ 86 points	$p_T > 7 \text{ GeV}$ 60 points			
$\langle \mathscr{O}^{J/\psi}({}^1S_0^{[8]}) \rangle$	8.54 ± 0.52	16.85 ± 1.23	11.02 ± 1.67	1.68 ± 2.20	2.18 ± 2.56			
$\langle \mathscr{O}^{J/\psi}({}^3S_1^{[8]}) angle$	-2.66 ± 0.69	-13.36 ± 1.60	-5.56 ± 2.19	8.75 ± 2.98	10.34 ± 3.55			
$\langle \mathscr{O}^{J/\psi}({}^3P_0^{[8]}) angle$	-3.63 ± 0.23	-7.70 ± 0.61	-4.46 ± 0.87	2.20 ± 1.23	3.50 ± 1.50			
M ₀	2.25 ± 0.12	3.51 ± 0.19	3.29 ± 0.20	5.50 ± 0.29	8.24 ± 0.58			
<i>M</i> ₁	6.37 ± 0.19	5.80 ± 0.19	5.54 ± 0.20	3.27 ± 0.29	1.63 ± 0.43			
Eithigh a section to low a set								

 \rightarrow Fit highly sensitive to low- p_T cut.

Comparison with fit to unpolarized, direct CDF II data with $p_T > 7 \text{ GeV}$ Y.-Q. Ma, K. Wang, and K.-T. Chao, Phys. Rev. D **84**, 114001 (2011): $M_0 = (8.54 \pm 1.02) \times 10^{-2} \text{ GeV}^3$ $M_1 = (1.67 \pm 1.05) \times 10^{-3} \text{ GeV}^3$