Forward Jets and Small-x Physics at the LHC

F. Hautmann (Oxford)

collaboration with M. Deak, H. Jung and K. Kutak

I. Introduction: high-p_T events in the forward region

II. QCD factorization at high energy and parton showers

III. Forward jet observables at the LHC
Particle production in the forward region at hadron colliders:

\[p \rightarrow \text{hadrons} \rightarrow p \]

small polar angles, i.e. large rapidities

◊ Historically:
 • fairly specialized subject: e.g., measurements of \(\sigma(\text{total}) \) and \(\sigma(\text{elastic}) \)
 • dominated by soft, small-\(p_T \) processes

◊ At the LHC:
 • both soft and hard production
 • phase space opening up for large \(\sqrt{s} \) ⇒ multiple-scale processes
 • unprecedented coverage of large rapidities (calorimeters + proton taggers)

⇒ forward high-\(p_T \) production
♠ Forward high-p_T production at the LHC involves both new particle discovery processes, e.g.

- Higgs searches in vector boson fusion channels
- jet studies in decays of highly boosted heavy states

and new aspects of Standard Model physics, e.g.

- QCD at small x and its interplay with cosmic ray physics
- new states of strongly interacting matter at high density
II. High-p_T production in the forward region

- Forward jets, Drell Yan pairs, b–quarks,…
- Multiple hard scales
- Asymmetric parton kinematics $x_A \to 1$, $x_B \to 0$

◊ Are fixed-order QCD calculations reliable in the forward region?
Multiple parton interactions

Multi-jet production by (left) multiple parton chains; (right) single parton chain.

- modeled by shower Monte Carlo generators

Sjöstrand & Skands, 2006; Gieseke et al., 2008

Δ Do multiple parton interactions become non-negligible in hard processes at forward rapidities?
Forward jet production as a multi-scale problem

- summation of high-energy logarithmic corrections long recognized to be necessary for reliable QCD predictions
 ⇒ BFKL calculations

Mueller & Navelet, 1987; Del Duca et al., 1993; Stirling, 1994; Colferai et al., arXiv:1002.1365

- Large logarithmic corrections are present both in the hard p_T and in the rapidity interval

Both kinds of log contributions can be summed consistently to all orders of perturbation theory via QCD factorization at fixed k_T
Forward jets:

- High-energy factorization at fixed transverse momentum

\[
\frac{d\sigma}{dQ_t^2 d\varphi} = \sum_a \int \phi_{a/A} \otimes \frac{d\hat{\sigma}}{dQ_t^2 d\varphi} \otimes \phi_{g^*/B}
\]

- needed to resum consistently both logs of rapidity and logs of hard scale

\[Deak, Jung, Kutak & H, JHEP 09 (2009) 121\]

![Diagram of factorized structure of the cross section](a)

Figure 1: Factorized structure of the cross section.

- \(\phi_a\) near-collinear, large-\(x\); \(\phi_{g^*}\) \(k_\perp\)-dependent, small-\(x\)
- \(\hat{\sigma}\) off-shell (but gauge-invariant) continuation of hard-scattering matrix elements

\[Catani et al., 1991; Ciafaloni, 1998\]
FULLY EXCLUSIVE MATRIX ELEMENTS: BEHAVIOR AT LARGE k_\perp

$Q_t = \text{final-state transverse energy (in terms of two leading jets } p_t \text{'s)}$

$k_t = \text{transverse momentum carried away by extra jets}$

- Matrix elements factorize for high energy
 not only in collinear region but also at finite angle
 \Rightarrow \text{effects of coherence across large rapidity intervals not associated with small angles}

- Coupling to parton showers via merging scheme defined by factorization at high energy
\[\mathcal{G}(x, k_T, \mu) = \mathcal{G}_0(x, k_T, \mu) + \int \frac{dz}{z} \int \frac{dq^2}{q^2} \Theta(\mu - zq) \times \Delta(\mu, zq) \mathcal{P}(z, q, k_T) \mathcal{G}(x/z, k_T + (1 - z)q, q) \]

\[\int dk_\perp (G(k_\perp, \mu))_R \varphi(k_\perp) = \int dk_\perp G(k_\perp, \mu)[\varphi(k_\perp) - \Theta(\mu - k_\perp) \varphi(0)] \]
III. FORWARD JETS AT THE LHC

- polar angles small but far enough from beam axis
- measure correlations in azimuth, rapidity, p_T

\[p_\perp \gtrsim 20 \text{ GeV}, \Delta \eta \gtrsim 4 \div 6 \]

central + forward detectors

azimuthal plane
Forward jet spectrum [CMS Coll., arXiv:1202.0704]
Figure 8: Ratio of theory to data for differential cross sections as a function of p_T, for central ((a) and (c)) and forward ((b) and (d)) jets produced in dijet events. The error bars on all data points reflect just statistical uncertainties, with systematic uncertainties plotted as grey bands.

[CMS Coll., arXiv:1202.0704]
Figure 5: ΔR distribution of the central ($|\eta_c| < 2$, left) and forward jets ($3 < |\eta_f| < 5$, right) for $E_T > 10$ GeV (upper row) and $E_T > 30$ GeV (lower row). The prediction from the k_T shower (CASCADE) is shown with the solid blue line; the prediction from the collinear shower (PYTHIA) including multiple interactions and without multiple interactions is shown with the red and purple lines. $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$, where $\Delta \phi = \phi_{\text{jet}} - \phi_{\text{part}}$; $\Delta \eta = \eta_{\text{jet}} - \eta_{\text{part}}$.
Cross section as a function of the azimuthal difference $\Delta \phi$ between central and forward jet for different rapidity separations

[Deak et al., arXiv:1012.6037]

MC models:
- **CASCADE**: non-collinear radiative corrections to single parton chain
- **PYTHIA**: multiple parton interactions, no corrections to collinear approximation
1 central + 1 forward jet:
particle and energy flow in the inter-jet and outside regions
Transverse energy flow as a function of rapidity

\[1 < \eta_c < 2, \quad -5 < \eta_f < -4 \]

\[
\frac{dE_{\perp}}{d\eta} = \frac{1}{\sigma} \int dq_{\perp} q_{\perp} \frac{d\sigma}{dq_{\perp}} d\eta
\]

“Minijet” energy flow

- merge particles into jets via jet algorithm
- construct energy flow from jets with \(q_{\perp} > q_0 \)
- \(q_0 = \mathcal{O}(\text{a few GeV}) \) feasible at the LHC
Transverse energy flow in the inter-jet region

[Deak et al., arXiv:1112.6354]

(\text{left}) \text{ particle flow}; \text{ (right) minijet flow}

\begin{itemize}
 \item higher mini-jet activity in the inter-jet region from corrections to collinear ordering and from MPI
 \item little effect from NLO hard correction in POWHEG
\end{itemize}
Transverse energy flow in the outside region

- at large (opposite) rapidities, full branching well approximated by collinear ordering
- higher energy flow only from multiple interactions
Azimuthal dependence of transverse energy flow

(Left) central-jet; (middle) intermediate; (right) forward-jet rapidities

- More pronounced flattening of the $\Delta \phi$ distribution from Cascade and Pythia-mpi compared to Powheg and Pythia-nompi
Azimuthal dependence of transverse energy flow

(left) central-jet; (middle) intermediate; (right) forward-jet rapidities

LHC $\sqrt{s}=7000$ GeV; jet $E_t>10$ GeV; between central - forward jet
jet1 $\eta=1.5$, jet2 $\eta=-4.5$

1 < η < 2

minijets

• mini-jet energy flow
Toward higher p_{\perp}

- High energy factorization can be used to describe arbitrarily large p_{\perp}
 \Rightarrow subleading perturbative corrections from both shower evolution and matrix element

\blacklozenge u-pdf’s asymptotic behavior

$$G(k_{\perp}, \mu) \sim \exp \int_{\mu}^{k_{\perp}} \frac{dq_{\perp}}{q_{\perp}} \gamma(\alpha_s(q_{\perp})),$$

$$\gamma(\alpha_s) = \gamma_{LL} + \gamma_{NLL} + \ldots$$

$\gamma_{NLL} < 0$ reduces growth from multi-gluon emission at high k_{\perp}

\diamondsuit NLO corrections to hard matrix element matched with showers

[see M. Deak’s talk at this workshop]
 \Rightarrow likely to reduce dependence on cut-off scale μ

\spadesuit full doubly off-shell matrix elements
 \Rightarrow further re-arranging of shower kinematics and suppression at high p_{\perp}
- k_\perp-shower contains radiative corrections beyond leading order
 \Rightarrow subtractive procedure to avoid double counting

Ex.: $gg \rightarrow qq$ from direct production and from $gg \rightarrow gg \otimes g \rightarrow qq$

(left) parton-level; (right) jet-level
Comparison of transverse momentum spectra

[Jung & H, in progress]

(left) parton-level; (right) jet-level
Conclusions

• Forward high p_T physics — largely new field at the LHC
 ▶ jet studies in decays of boosted massive states
 ▶ Higgs searches in vector boson fusion
 ▶ QCD at small x and its interplay with cosmic ray physics

• New challenges to theory
 ▶ multiple hard scales ⇒ QCD corrections
 beyond finite-order perturbation theory and/or beyond single parton interaction
 ▶ first exp.'l observations in only rough agreement with current Monte Carlo’s

• CCFM parton showers coupled to high energy factorized matrix elements
 ▶ color coherence for both $x\rightarrow 0$ and $x\rightarrow 1$
 ▶ increased azimuthal decorrelation with forward-central jets
 ▶ increased particle and mini-jet energy flow in inter-jet region
 ▶ subleading corrections beyond collinear approximation?
 ▶ MPI effects?
Measurements of forward particle production (soft and hard) at the LHC serve as input to Monte Carlo models of high-energy showers in cosmic ray physics.

- Fixed target collision in air with 10^{17} eV corresponds to pp interaction at LHC.
Nearly all topics in forward hard production processes at the LHC imply new experimental areas

Theoretical issues: LHC forward physics dominated by QCD at small x

- Factorization/resummation for large rapidity separations
- Parton evolution / showering beyond collinear ordering
 - High parton density effects

Phenomenology: How well do current Monte Carlo generators simulate LHC final states in the forward region?
Remarks

◊ Note difference from classic Mueller-Navelet approach

\[
\sigma^{(MN)} = \sum_a \int \phi_{a/A} \otimes V_{jet1} \otimes g_g \otimes V_{jet2} \otimes \phi_{b/B}
\]

[Colferai, Schwennsen, Szymanowski and Wallon, JHEP 12 (2010) 026]

[D’Enterria, arXiv:0911.1273]

• non-collinear corrections to \(\phi \) distributions

• no “vertex jet function” \(V_{jet} \)

• jets produced by either hard ME or parton shower (taking account of \(k_\perp \))
Beyond quenched approximation:
unintegrated quark evolution

[Hentschinski, Jung & H, in progress]

\[P_{g \rightarrow q}(z; q, k) = P_{qg, \text{GLAP}}(z) \left(1 + \sum_{n=0}^{\infty} b_n(z) \left(\frac{k^2}{q^2} \right)^n \right) \]

all \(b_n \) known; \(P_{g \rightarrow q} \) computed in closed form (positive-definite)

in [Catani & H, 1994; Ciafaloni et al., 2005-2006] by small-\(x \) factorization

\bullet \text{sea: flavor-singlet evolution coupled to gluons at small } x \text{ via}

\[P_{g \rightarrow q}(z; q, k) = P_{qg, \text{GLAP}}(z) \left(1 + \sum_{n=0}^{\infty} b_n(z) \left(\frac{k^2}{q^2} \right)^n \right) \]

\(b_n \) known; \(P_{g \rightarrow q} \) computed in closed form (positive-definite)

in [Catani & H, 1994; Ciafaloni et al., 2005-2006] by small-\(x \) factorization

\bullet \text{valence: independent evolution (dominated by soft gluons } x \rightarrow 1)
COHERENCE IN HIGH-ENERGY LIMIT

Soft vector-emission current from external legs →
- leading IR singularities

[J.C. Taylor, 1980; Gribov-Low (QED)]

- fully appropriate in single-scale hard processes

Dokshitzer, Khoze, Mueller and Troian, RMP (1988); Webber, A. Rev. Nucl. Part. (1986)

multi-scale: \(s = q_1^2 \gg \cdots \gg q_n^2 \gg \Lambda^2 \)

[e.g.: LHC final states with multi-jets]

\[M^{(n+1)}(k, p)^2 = \{ [M^{(n)}(k + q, p)]^\dagger [J^{(R)}] M^{(n)}(k + q, p) - [M^{(n)}(k, p)]^\dagger [J^{(V)}] M^{(n)}(k, p) \}^2. \]

BUT...
\[\mathcal{G}(x, k_T, \mu) = \mathcal{G}_0(x, k_T, \mu) + \int \frac{dz}{z} \int \frac{dq^2}{q^2} \Theta(\mu - zq) \]
\[\times \Delta(\mu, zq) \mathcal{P}(z, q, k_T) \mathcal{G}(x/z, k_T + (1 - z)q, q) \]

\[\mathcal{G}(x, k_T, \mu) \]

\[\text{Sudakov} \quad \text{unintegr. splitting} \]

\[\Rightarrow \text{CCFM evolution equation} \]

\[\Rightarrow \text{Monte Carlo implementations: CASCADe, LDC, ...} \]