BSM Higgs and other bump searches at the Tevatron

E. Chapon on behalf of the CDF and DØ collaborations $% \left({{{\rm{D}}}_{{{\rm{A}}}}} \right) = {{\rm{D}}_{{{\rm{A}}}}} \left({{{\rm{D}}_{{{\rm{A}}}}}} \right) = {{\rm{D}}_{{{\rm{A}}}}}} \left({{{\rm{D}}_{{{\rm{A}}}}}} \right) = {{\rm{D}}_{{{\rm{A}}}}} \left({{{\rm{D}}_{{{\rm{A}}}}}} \right) = {{\rm{D}}_{{{\rm{A}}}}} \left({{{\rm{D}}_{{{\rm{A}}}}}} \right) = {{\rm{D}}_{{{\rm{A}}}}} \left({{{\rm{D}}_{{{\rm{A}}}}}} \right) = {{\rm{D}}_{{{\rm{A}}}}}} \left({{{\rm{D}}_{{{\rm{A}}}}}} \right) = {{\rm{D}}_{{{\rm{A}}}}} \left({{{\rm{D}}_{{{\rm{A}}}}}} \right) = {{\rm{D}}_{{{\rm{A}}}}}} \left({{{\rm{D}}_{{{\rm{A}}}}}} \right) = {{\rm{D}}_{{{\rm{A}}}}} \left({{{\rm{D}}_{{{\rm{A}}}}} \right) = {{\rm{D}}_{{{\rm{A}}}}} \left({{{\rm{D}}_{{{\rm{A}}}}}} \right) = {{\rm{D}}_{{{{\rm{A}}}}}} \left({{{\rm{D}}_{{{\rm{A}}}}} \right) = {{\rm{D}}_{{{{\rm{A}}}}}} \left({{{\rm{D}}_{{{\rm{A}}}}} \right) = {{{\rm{D}}_{{{{\rm{A}}}}}} \left({{{\rm{D}}}}} \right) = {{{\rm{D}}}_{{{{\rm{A}}}}}} \left({{{\rm{D}}}_{{{{\rm{A}}}}}} \right) = {{{\rm{D}}_{{{{\rm{A}}}}}} \left({{{\rm{D}}}}} \right) = {{{{\rm{D}}}_{{{{\rm{A}}}}}}} \left({{{\rm{D}}}} \right) = {{{\rm{D}}_{{{{\rm{A}}}}}}} \left({{{{\rm{D}}}}} \right) = {{{\rm{D}}_{{{{{\rm{D}}}}}}} \left({{{\rm{D}}} \right) = {{{\rm{D}}}}} \right) = {{{{\rm{D}}}_{{{{\rm{A}}}}}}} \left({{{\rm{D}}}} \right) = {{{{\rm{D}}_{{{{\rm{D}}}}}}} \left({{{{\rm{D}}}}} \right) = {{{{\rm{D}}}} \left({{{\rm{D}}}} \right) = {{{{\rm{D}}}}} \right) = {{{{\rm{D}}}} \left({{{\rm{D}}$

CEA Saclay / Irfu / SPP

International Workshop on Deep-Inelastic Scattering and Related Subjects, March 26-30, 2012

1 MSSM

- $\phi \rightarrow \tau \tau$ (incl.)
- $b\phi \rightarrow b\bar{b}b$
- $b\phi \rightarrow b\tau\tau$
- Combination
- 2 Extended Higgs Sector Models
 - Hidden Valley
 - Doubly-Charged Higgs Boson
 - 3 Fermiophobic Higgs search
- Dijet Mass Spectrum in W + jj Events

Many thanks to the Tevatron

11.9 fb⁻¹ of $p\bar{p}$ collisions delivered between April 2002 and September 30th 2011!

MSSM

The Higgs Sector in the MSSM

- Two Higgs doublets (coupling to resp. up- and down-type quarks, with vevs resp. v_u and v_d). tan $\beta = \frac{v_u}{v_d}$
 - $\tan \beta \approx \frac{m_t}{m_b} \approx 35$ (large $\tan \beta$) looks natural.
- Five physical Higgs bosons:
 - Three neutral A, h, H (collectively denoted ϕ),
 - Two charged H^+, H^- .
- *Hbb* coupling enhanced by $\tan \beta$
 - Enhanced production cross-section $\sigma(p\bar{p} \rightarrow \phi)$ compared to the SM.
 - h/A or H/A degenerate in mass: $\sigma \times 2$
 - $\dot{\mathcal{B}}(\phi
 ightarrow b ar{b}) pprox 90\%$, $\mathcal{B}(\phi
 ightarrow au^+ au^-) pprox 10\%$
- MSSM Higgs sector fully described by $\{m_A, \tan \beta\}$ at tree level.
 - Radiative corrections make it more model-dependent for $\phi \rightarrow b\bar{b}$.

MSSM

au identification at the Tevatron

Analyses with τ leptons:

- Several channels to combine.
- Missing energy (information) from neutrinos.
- $\tau_{\rm had}$: multijet background.

DØ

Neural network NN_{τ} .

- Use isolation, shower shape, trk-cal consistency variables
- eff. = 65%, fake rate = 2.5%

CDF

Cut-based.

- Signal / isolation cones, π^0 reconstruction
- $\bullet\,$ eff. = 50%, fake rate <1%

MSSM $\phi \rightarrow \tau \tau$ (incl.)

$\phi \rightarrow \tau \tau$ (incl.) (DØ, CDF)

CDF Run II 1.8 fb⁻¹

MSSM ot→ττ Search

Α→ττ

Z/γ*→ττ other EW, tt

observed

 $\tau_{e}\tau_{had} + \tau_{\mu}\tau_{had}$ channels

1000

800

600

400

• CDF:

• $\tau_{\mu}\tau_{had}$, $\tau_{e}\tau_{had}$, $\tau_{e}\tau_{\mu}$ (1.8 fb⁻¹, PRL 103, 201801 (2009))

- DØ:
 - $\tau_e \tau_\mu$, $\tau_\mu \tau_{had}$ (5.4 fb⁻¹, PLB 707, 323 (2011)), $\tau_\mu \tau_{had}$ (7.3 fb⁻¹, Accepted by PLB, 2012).
- Look for an excess in the visible mass spectrum:

MSSM $b\phi \rightarrow b\bar{b}b$

$b\phi ightarrow bar{b}b$ (DØ, CDF)

- ${\cal B}(\phi o b ar b) pprox$ 90% at high tan eta
- Selection: 3-4 high- p_T jets, \geq 3 b-jets.
 - CDF *b*-tagging: displaced vertices, vertex mass separation.
 - DØ b-tagging: multivariate discriminant.
- Challenging multijet background:
 - Fit the flavor composition from data.
- Use $M_{b\bar{b}}$ distribution to set limits.
 - CDF: use two leading jets.
 - DØ: jet pair with highest likelihood.

MSSM $b\phi \rightarrow b\bar{b}b$

$b\phi ightarrow bar{b}b$: limits

Both experiments see some excess.

- DØ: ≈ 2.5σ at 120 GeV (≈ 2.0σ after LEE)
- CDF: $\approx 2.8\sigma$ at 150 GeV ($\approx 1.9\sigma$ after LEE)
- A Tevatron $b\phi \rightarrow b\bar{b}b$ combination is in progress.
- Translate limits in MSSM benchmarks scenarios:
 - Big dependence on sign(μ).
 - Large $\tan \beta$: enhanced *bbH* coupling, increased Higgs width.

$b\phi \rightarrow b\tau\tau$ (DØ)

Final states: $\tau_e \tau_{had}$ (3.7 fb⁻¹, Preliminary), $\tau_\mu \tau_{had}$ (7.3 fb⁻¹, PRL 107, 121801 (2011))

- Little sensitive to model parameters (compared to $b\phi \rightarrow b\bar{b}b$).
- Less $Z \rightarrow \tau \tau$ compared to $\phi \rightarrow \tau \tau$ (incl.)
 - Thanks to the use of *b*-tagging.
- Multijet and $t\overline{t}$ discriminants.
- Limits set on a final discriminant.

MSSM Combination

MSSM combination $(D\emptyset)$

Combined limits on MSSM neutral Higgs production using:

- $b\phi \rightarrow b\bar{b}b$ (5.2 fb⁻¹),
- $b\phi \rightarrow b\tau_{\mu}\tau_{had}$ (7.3 fb⁻¹),
- $\phi \rightarrow \tau_{\mu} \tau_{had}$ (7.3 fb⁻¹, re-analyzed with *b*-jet veto).

Hidden Valley (CDF)

- Search for long-lived heavy particles ($c\tau \approx 1\,{\rm cm}$).
- Decay mode HV $ightarrow bar{b}$
- Look at displaced vertex variables: ψ , ζ

M_{h0} (GeV/c²)

Doubly-Charged Higgs Boson (DØ)

- Models with two Higgs triplets (branching ratios depend on the model).
- Final state: two hadronic taus and one muon.
- Four channels (nature of the two same-sign leptons, presence of additional leptons).
- First search for $H^{\pm\pm} \to \tau_{had} \tau_{had} X$ at a hadronic collider.

Fermiophobic Higgs search

Fermiophobic Higgs search (DØ, CDF)

- No coupling to fermions
- $gg \rightarrow H_f$ forbidden: only VH_f and VBF.
- $H_f \to ff$ forbidden.
 - ${\it H_f}
 ightarrow \gamma \gamma$ greatly enhanced and dominates the exclusion.
- $H_f \rightarrow \gamma \gamma$ analysis strategy:
 - DØ: Decision tree. Background estimated from MC.
 - CDF: $M_{\gamma\gamma}$ distribution in 3 independent $p_T^{\gamma\gamma}$ bins. Background estimated from sideband fitting (sliding window).

Fermiophobic Higgs (limits)

CDF Run II Preliminary

- $H_f \rightarrow \gamma \gamma$:
 - limits on $\mathcal{B}(H_f \to \gamma \gamma)$ converted into limits on $\sigma \times \mathcal{B}(H_f \to \gamma \gamma)$ using the fermiophobic Higgs benchmark scenario.
- Combine $H_f \rightarrow \gamma \gamma$ and $H_f \rightarrow W^+ W^-$ from CDF and DØ ($\mathcal{L} \leq 8.2 \, \text{fb}^{-1}$)
 - $m_{H_f} > 119 \,{
 m GeV}/c^2$ at 95% C.L.

 $B(h_f \rightarrow \gamma \gamma)$

10"

CDF limit (10.0 Expected limit

1 sigma region 2 sigma region

Fermiophobic Higgs (limits)

CDF Run II Preliminary

- $H_f \rightarrow \gamma \gamma$:
 - limits on $\mathcal{B}(H_f \to \gamma \gamma)$ converted into limits on $\sigma \times \mathcal{B}(H_f \to \gamma \gamma)$ using the fermiophobic Higgs benchmark scenario.
- Combine $H_f \rightarrow \gamma \gamma$ and $H_f \rightarrow W^+ W^-$ from CDF and DØ ($\mathcal{L} \leq 8.2 \, \text{fb}^{-1}$)
 - $m_{H_f} > 119 \, {\rm GeV}/c^2$ at 95% C.L.

 $B(h_f \rightarrow \gamma \gamma)$

10"

sigma region

2 sigma region

Dijet Mass Spectrum in W + jj Events

CDF and DØ disagree... CDF is performing several independent analyses with the full dataset to make a final statement on the subject.

- The Higgs sector is a good place too for new physics.
 - Reported CDF and DØ results with up to the full Run II Tevatron dataset.
 - Also H^{\pm} and NMSSM searches (not reported here).
- MSSM Higgs searches:
 - Look for $\phi \to b\bar{b}$ and $\phi \to \tau^+ \tau^-$.
 - Different channels with similar sensitivity: combine!
- Extended Higgs Sector and other exotic models.
 - Hidden Valley (long-lived heavy particle).
 - Doubly-charged Higgs.
 - Fermiophobic Higgs.
- W + jj di-jet mass spectrum.
 - CDF and DØ agree to disagree...

These are legacy results from the Tevatron

Upcoming: $b\phi \rightarrow b\bar{b}b$ update, Fermiophobic Higgs Tevatron combination with the full Run II dataset.

Higgs bosons branching ratios depend only on $m_{\!A}$ and $\tan\beta$ at tree level in the MSSM.

However radiative corrections make them much more model-dependent, hence the need for additional assumptions (benchmark scenarios):

Parameter	m_h^{\max} scenario	No-mixing scenario
X_t	2 TeV	0 TeV
μ	\pm 0.2 TeV	\pm 0.2 TeV
M_2	0.2 TeV	0.2 TeV
$m_{\tilde{g}}$	0.8 TeV	1.6 TeV
M _{SUSY}	1 TeV	2 TeV

Note the need to test both signs of the μ parameter, which has a big impact on radiative corrections (for $\mathcal{B}(\phi \rightarrow b\bar{b})$).

B\$\$ 😲

- *B* hadrons travel in the detector before they decay.
- Information used in *b*-tagging:
 - Secondary vertex,
 - Impact parameters of tracks,
- DØ: Multivariate discriminant.
- CDF: Displaced vertices, L_{xy}/σ cut, vertex mass separation.

MSSM combination (DØ)

NMSSM $h \rightarrow aa (DØ)$

B

- PRL 103, 061801 (2009)
- Model with reduced $\mathcal{B}(h
 ightarrow bar{b}).$
- The dominant decay becomes $h \rightarrow aa$ where a is a light pseudo-scalar Higgs.
- General LEP search limit: $M_h > 82 \text{ GeV}$.
- For $2m_{\mu} < M_{a} <\sim 2m_{ au} (\sim 3.6\,{
 m GeV})$: $aa
 ightarrow \mu \mu \mu \mu$
 - Two pairs of extremely collinear muons (because of the low M_a).
 - $\mathcal{B}(a \rightarrow \mu \mu) < 7\%$ assuming $\mathcal{B}(h \rightarrow aa) \sim 1$.
- For $2m_ au < M_a < 2m_b (\sim 9\,{
 m GeV})$: aa $ightarrow \mu\mu au au$

NMSSM Charged Higgs (CDF)

- Search for a light (mass $< 2m_b$) NMSSM pseudo-scalar Higgs boson A in top decays, with $A \rightarrow \tau \tau$.
- $t \to H^{\pm}b \to W^{\pm^{(*)}}Ab$
- Use the isolated track p_T spectrum to derive limits.

H^{\pm} (CDF, DØ)

- If $M_{H^\pm} < m_{
 m top}$, $t o H^\pm b$ is allowed.
- CDF: PRL 103, 101803 (2009) (2.2 fb⁻¹).
- DØ: PLB 682, 278 (2009) (1.0 fb⁻¹).
- Two scenarios:
 - $H^{\pm} \rightarrow \tau \nu$ (high tan β),
 - $H^{\pm} \rightarrow c\bar{s}$ (low tan β).
- Look at *I* + jets (CDF+DØ), dilepton and *I*π_{had} events (DØ).

PRL 103, 071801 (2009) (3.6 fb⁻¹)

W + jj: quark vs. gluon jets (CDF)

No cut (less qq)

$$E_T^{\rm j1}/E_T^{\rm j2} > 0.6$$

W + jj: other tests (CDF)

JES shifted by +7% (twice the systematic uncertainty)

W+jets modeled by SHERPA (instead of ALPGEN)

For more information

http://www-cdf.fnal.gov/physics/ewk/2011/wjj/7_3.html