Differential and total cross sections for top pair and single top production

Nikolaos Kidonakis
(Kennesaw State University)

• $t\bar{t}$ and single top production channels
• Higher-order two-loop corrections
• $t\bar{t}$ cross section at LHC and Tevatron
• Top p_T and rapidity distributions
• t-channel production
• s-channel production
• Associated production of a top with a W^- or H^-
Partonic processes at LO

Top-antitop pair production

- $q\bar{q} \rightarrow t\bar{t}$
 dominant at Tevatron

- $gg \rightarrow t\bar{t}$
 dominant at LHC
Single top quark production

- **t channel:** $qb \rightarrow q't$ and $\bar{q}b \rightarrow \bar{q}'t$
dominant at Tevatron and LHC

- **s channel:** $qq' \rightarrow bt$
small at Tevatron and LHC

- **associated tW production:** $bg \rightarrow tW^-$
 very small at Tevatron, significant at LHC

Related process: $bg \rightarrow tH^-$
Higher-order corrections

QCD corrections significant for top pair and single top quark production

Soft-gluon corrections from emission of soft (low-energy) gluons

Soft corrections: \(\left[\ln^k \left(\frac{s_4}{m^2} \right) \right]_+ \) with \(k \leq 2n - 1 \), \(s_4 \) distance from threshold

Soft-gluon corrections are dominant near threshold

Resum these soft corrections - factorization and RGE

Complete results at NNLL–two-loop soft anomalous dimension

NK, PRD 82, 114030 (2010); PRD 84, 011504 (2011) \((t\bar{t})\)

NK, PRD 81, 054028 (2010); PRD 82, 054018 (2010); PRD 83, 091503 (2011) \((\text{single top})\)

Approximate NNLO cross section from expansion of resummed cross section

This is the only calculation at the differential cross section level using the standard moment-space resummation in pQCD
Threshold approximation

Approximation works very well not only for Tevatron but also for LHC energies because partonic threshold is still important

![Graph of σ vs m (GeV) for pp → t̄ at LHC S^{1/2}=7 TeV μ=m with O(α_s) approx corrections and O(α_s) exact corrections.]

![Graph of dσ/dp_T (pb/GeV) vs p_T (GeV) for Top quark p_T distribution at LHC S^{1/2}=8 TeV μ=m=173 GeV with NLO approx and NLO exact corrections.]

only 1% difference between first-order approximate and exact corrections

→ less than 1% difference between NLO approximate and exact cross sections

Also true for differential distributions

For best prediction add NNLO approximate corrections to exact NLO cross section

N. Kidonakis, DIS 2012, Bonn, Germany, March 2012
$t\bar{t}$ cross section at the Tevatron

$\sigma_{tt}(m_t = 173 \text{ GeV}, 1.96 \text{ TeV}) = 7.08^{+0.00+0.36}_{-0.24-0.27} \text{ pb}$

NNLO approx: 7.8\% enhancement over NLO
scale dependence greatly reduced

used MSTW 2008 NNLO pdf
\[\sigma_{t\bar{t}}^{\text{NNLO approx}} (m_t = 173 \text{ GeV}, 7 \text{ TeV}) = 163^{+7}_{-5} \pm 9 \text{ pb} \]
\[\sigma_{t\bar{t}}^{\text{NNLO approx}} (m_t = 173 \text{ GeV}, 8 \text{ TeV}) = 234^{+10}_{-7} \pm 12 \text{ pb} \]
\[\sigma_{t\bar{t}}^{\text{NNLO approx}} (m_t = 173 \text{ GeV}, 14 \text{ TeV}) = 920^{+50+33}_{-39-35} \text{ pb} \]

\textbf{NNLO approx: enhancement over NLO (same pdf) is 7.6\% at 7 TeV; 7.8\% at 8 TeV; 8.0\% at 14 TeV}
Top quark p_T distribution at Tevatron

Excellent agreement of NNLO approx results with D0 data

N. Kidonakis, DIS 2012, Bonn, Germany, March 2012
Top quark rapidity distribution at Tevatron

Top quark rapidity at Tevatron \(S^{1/2} = 1.96 \) TeV \(m = 173 \) GeV

\[
d\sigma/dY \text{ (pb)}
\]

- NLO \(\mu = m \)
- NLO \(\mu = m/2, 2m \)
- NNLO approx \(\mu = m \)
- NNLO approx \(\mu = m/2, 2m \)

Top Forward-backward asymmetry

\[
A_{FB} = \frac{\sigma(Y > 0) - \sigma(Y < 0)}{\sigma(Y > 0) + \sigma(Y < 0)}
\]

Asymmetry significant at the Tevatron

Theoretical result at Tevatron: \(A_{FB} = 0.052^{+0.000}_{-0.006} \)

smaller than observed values
Top quark rapidity distribution at LHC

Top quark rapidity at LHC $S^{1/2}=7\,\text{TeV}$ $m=173\,\text{GeV}$

Top quark rapidity distribution at LHC $\mu=m=173\,\text{GeV}$

N. Kidonakis, DIS 2012, Bonn, Germany, March 2012
\textbf{t-channel cross sections at LHC}

For $m_t = 173$ GeV

<table>
<thead>
<tr>
<th>LHC</th>
<th>t</th>
<th>\bar{t}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 TeV</td>
<td>$43.0^{+1.6}_{-0.2} \pm 0.8$</td>
<td>$22.9 \pm 0.5^{+0.7}_{-0.9}$</td>
</tr>
<tr>
<td>8 TeV</td>
<td>$56.4^{+2.1}_{-0.3} \pm 1.1$</td>
<td>$30.7 \pm 0.7^{+0.9}_{-1.1}$</td>
</tr>
<tr>
<td>14 TeV</td>
<td>$154^{+4}_{-1} \pm 3$</td>
<td>$94^{+2}{-1}^{+2}{-3}$</td>
</tr>
</tbody>
</table>
\[
\sigma_{t\text{-channel}}^{\text{NNLO approx, total}} (m_t = 173 \text{ GeV}, 7 \text{ TeV}) = 65.9^{+2.1+1.5}_{-0.7-1.7} \text{ pb} \\
\sigma_{t\text{-channel}}^{\text{NNLO approx, total}} (m_t = 173 \text{ GeV}, 8 \text{ TeV}) = 87.2^{+2.8+2.0}_{-1.0-2.2} \text{ pb} \\
\sigma_{t\text{-channel}}^{\text{NNLO approx, total}} (m_t = 173 \text{ GeV}, 14 \text{ TeV}) = 248^{+6+5}_{-2-6} \text{ pb}
\]

Small \(\mathcal{O}(1\%) \) corrections over NLO
t-channel top and antitop p_T distributions at LHC

t-channel top quark p_T distribution at LHC $\mu=m_t=173$ GeV

t-channel antitop quark p_T distribution at LHC $\mu=m_t=173$ GeV

N. Kidonakis, DIS 2012, Bonn, Germany, March 2012
t-channel top quark production at Tevatron

Single top Tevatron t-channel NNLO approx (NNLL) $\mu=m_t$

Cross section for antitop t-channel production at Tevatron is identical

$$\sigma_{t\text{-channel}}^{\text{NNLOapprox, top}}(m_t = 173 \text{ GeV}, 1.96 \text{ TeV}) = 1.04^{+0.00}_{-0.02} \pm 0.06 \text{ pb}$$

$N. Kidonakis, DIS 2012, Bonn, Germany, March 2012$
s-channel cross sections

Single top LHC s-channel NNLO approx (NNLL) $\mu = m_t$

![Graph showing σ (pb) vs. m_t (GeV) for 7 TeV, 8 TeV, and 14 TeV LHC.](image)

Single antitop LHC s-channel NNLO approx (NNLL) $\mu = m_t$

![Graph showing σ (pb) vs. m_t (GeV) for 7 TeV, 8 TeV, and 14 TeV LHC.](image)

<table>
<thead>
<tr>
<th>LHC</th>
<th>t</th>
<th>\bar{t}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 TeV</td>
<td>$3.14 \pm 0.06^{+0.12}_{-0.10}$</td>
<td>$1.42 \pm 0.01^{+0.06}_{-0.07}$</td>
</tr>
<tr>
<td>8 TeV</td>
<td>$3.79 \pm 0.07 \pm 0.13$</td>
<td>$1.76 \pm 0.01 \pm 0.08$</td>
</tr>
<tr>
<td>14 TeV</td>
<td>$7.87 \pm 0.14^{+0.31}_{-0.28}$</td>
<td>$3.99 \pm 0.05^{+0.14}_{-0.21}$</td>
</tr>
</tbody>
</table>

For $m_t = 173$ GeV

At Tevatron $\sqrt{S} = 1.96$ TeV: $0.523^{+0.001+0.030}_{-0.005-0.028}$ pb for top; same for antitop

N. Kidonakis, DIS 2012, Bonn, Germany, March 2012
s-channel total cross section at LHC

LHC s-channel total NNLO approx (NNLL) $\mu = m_t$

$$\sigma_{s\text{-channel}}^{\text{NNLO approx, total}}(m_t = 173 \text{ GeV}, 7 \text{ TeV}) = 4.56 \pm 0.07^{+0.18}_{-0.17} \text{ pb}$$

$$\sigma_{s\text{-channel}}^{\text{NNLO approx, total}}(m_t = 173 \text{ GeV}, 8 \text{ TeV}) = 5.55 \pm 0.08 \pm 0.21 \text{ pb}$$

$$\sigma_{s\text{-channel}}^{\text{NNLO approx, total}}(m_t = 173 \text{ GeV}, 14 \text{ TeV}) = 11.86 \pm 0.19^{+0.45}_{-0.49} \text{ pb}$$

NNLO approx: enhancement over NLO is $\sim 10\%$

N. Kidonakis, DIS 2012, Bonn, Germany, March 2012
Associated tW^- production at the LHC

\[\sigma_{tW}^{\text{NNLO approx}}(m_t = 173 \text{ GeV}, 7 \text{ TeV}) = 7.8 \pm 0.2^{+0.5}_{-0.6} \text{ pb} \]

\[\sigma_{tW}^{\text{NNLO approx}}(m_t = 173 \text{ GeV}, 8 \text{ TeV}) = 11.1 \pm 0.3 \pm 0.7 \text{ pb} \]

\[\sigma_{tW}^{\text{NNLO approx}}(m_t = 173 \text{ GeV}, 14 \text{ TeV}) = 41.8 \pm 1.0^{+1.5}_{-2.4} \text{ pb} \]

NNLO approx corrections increase NLO cross section by $\sim 8\%$

Cross section for $\bar{t}W^+$ production is identical
Associated production of a top quark with a charged Higgs

NNLO approx corrections increase NLO cross section by ~ 15 to $\sim 20\%$
Summary

• NNLL resummation for top quark pair and single top production

• $t\bar{t}$ production cross section

• top quark p_T and rapidity distributions

• single top cross sections and p_T distributions

• NNLO approx corrections for top pair and single top production are significant at Tevatron and LHC

• good agreement with LHC and Tevatron data