High-Q^2 e^+p Neutral Current Cross Sections at HERA and Determination of the Structure Function xF_3

Friederike Januschek
DESY
On Behalf of the ZEUS Collaboration

DIS 2012, 26-30 March, Bonn, Germany

1. Polarised Cross Sections
2. Unpolarised Cross Sections
 - xF_3 extraction
The HERA Collider

- **HERA**: electron-proton collider with $\sqrt{s} = 318$ GeV

Integrated luminosity: 0.5 fb$^{-1}$ per experiment

- 27.5 GeV
- 920 GeV

- Four experiments: HERA B, HERMES; H1 and ZEUS
- Two data-taking periods: HERA I (92-00) and HERA II (03-07)
- HERA-II: longitudinally polarised lepton beam
The ZEUS Detector

Uranium-Scintillator Calorimeter
Energy and position of particles
- covering 99.7 % of the solid angle
- electromagnetic CAL: $\frac{\sigma_{em}(E)}{E} = 18\% \sqrt{E}$
- hadronic CAL: $\frac{\sigma_{had}(E)}{E} = 35\% \sqrt{E}$

Tracking System
Direction and momentum of charged particles
- **CTD**: cylindric drift chamber
 (length: 241 cm, $0.3 < \theta < 2.85$)
- **MVD**: silicon strip detector
Deep Inelastic Scattering

Variables which characterise DIS:

- Q^2 probing power, negative 4-momentum squared:
 \[Q^2 = -q^2 = -(k - k') \]

- Bjorken x, momentum fraction of proton carried by struck quark:
 \[x = Q^2 / 2P \cdot q \]

- Inelasticity y:
 \[y = P \cdot q / P \cdot k \]

- s is the centre-of-mass energy squared:
 \[s = (P + k)^2 \]

- These are related by:
 \[Q^2 = sxy \]

- Neutral Current (NC), γ or Z exchange.
 \[e^\pm p \rightarrow e^\pm X \]

- Charged Current (CC), W^\pm exchange.
 \[e^\pm p \rightarrow \nu X \]
Neutral Current Events in the ZEUS Detector

- Well measured scattered e^\pm.
- e^\pm energy deposits and jet(s) balanced in ϕ.
- Kinematics may be reconstructed in multiple ways.

Friederike Januschek DESY
On Behalf of the ZEUS Collaboration
Proton Structure Functions

\[
\frac{d^2 \sigma_{NC}^{e\pm p}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \left[Y_+ \tilde{F}_2(x, Q^2) \mp Y_- x \tilde{F}_3(x, Q^2) - y^2 \tilde{F}_L(x, Q^2) \right]
\]

where \(Y_\pm = 1 \pm (1 - y)^2 \)

dominant \hspace{1cm} relevant at high \(Q^2 \) \hspace{1cm} relevant at high \(y \)
Proton Structure Functions

\[
\frac{d^2 \sigma_{NC}^{e^\pm p}}{dx dQ^2} = \frac{2 \pi \alpha^2}{x Q^4} \left[Y_+ \tilde{F}_2(x, Q^2) \mp Y_- x \tilde{F}_3(x, Q^2) - y^2 \tilde{F}_L(x, Q^2) \right]
\]

- dominant
- relevant at high \(Q^2 \)
- relevant at high \(y \)
- polarisation of \(e \)

\[
\tilde{F}_2^{\pm} = F_2^\gamma - (v_e \mp P_e a_e) \chi_Z F_2^\gamma Z + (v_e^2 + a_e^2 \mp 2 P_e v_e a_e) \chi_Z^2 F_2^Z
\]

\[
x \tilde{F}_3^{\pm} = - (a_e \mp P_e v_e) \chi_Z x F_3^\gamma Z + (\mp P_e (v_e^2 + a_e^2) + 2 v_e a_e) \chi_Z^2 x F_3^Z
\]

- axial-vector coupling of \(e \) to \(Z \)
- vector coupling of \(e \) to \(Z \)
Proton Structure Functions

\[\frac{d^2 \sigma_{NC}^{e^\pm p}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \left[Y_+ \tilde{F}_2(x, Q^2) \mp Y_- x \tilde{F}_3(x, Q^2) - y^2 \tilde{F}_L(x, Q^2) \right] \]

dominant relevant at high \(Q^2 \)

\[\tilde{F}_2^\pm = F_2^\gamma - (v_e \mp Pe a_e) \chi Z F_2^\gamma Z + (v_e^2 + a_e^2 \mp 2 Pe v_e a_e) \chi^2 Z F_2^Z \]

relevant at high \(y \)

\(\text{polarisation of } e \)

\[x \tilde{F}_3^\pm = - (a_e \mp Pe v_e) \chi Z xF_3^\gamma Z + (\mp Pe (v_e^2 + a_e^2) + 2 v_e a_e) \chi^2 Z xF_3^Z \]

axial-vector coupling of \(e \) to \(Z \)

vector coupling of \(e \) to \(Z \)

Friederike Januschek DESY
On Behalf of the ZEUS Collaboration
High-\(Q^2 \) \(e^\pm p \) Neutral Current Cross Sections at HERA and Determination of the Structure Function \(xF_3 \)
Proton Structure Functions

\[
\frac{d^2 \sigma_{\text{NC}}^{e^\pm p}}{dx dQ^2} = \frac{2\pi \alpha^2}{x Q^4} \left[Y_+ \tilde{F}_2(x, Q^2) \mp Y_- x \tilde{F}_3(x, Q^2) - y^2 \tilde{F}_L(x, Q^2) \right]
\]

dominant
relevant at high \(Q^2 \)
relevant at high \(y \)
polarisation of \(e \)

\[
\tilde{F}_2^{\pm} = F_2^\gamma - (\nu_e \mp P_e a_e) \chi Z F_2^{\gamma Z} + (\nu_e^2 + a_e^2 \mp 2 P_e \nu_e a_e) \chi Z^2 F_2^Z
\]

\[
x \tilde{F}_3^{\pm} = - (a_e \mp P_e \nu_e) \chi Z x F_3^{\gamma Z} + (\mp P_e (\nu_e^2 + a_e^2) + 2 \nu_e a_e) \chi Z^2 x F_3^Z
\]

axial-vector coupling of \(e \) to \(Z \)
vector coupling of \(e \) to \(Z \)
Proton Structure Functions

\[
\frac{d^2 \sigma_{NC}^{e^+p}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \left[Y_+ \tilde{F}_2(x, Q^2) \mp Y_- \tilde{F}_3(x, Q^2) - y^2 \tilde{F}_L(x, Q^2) \right]
\]

dominant relevant at high \(Q^2\) relevant at high \(y\)

\[
\tilde{F}_2^\pm = F_2^\gamma - (\nu_e \mp P_e a_e) \chi_Z F_2^{\gamma Z} + (\nu_e^2 + a_e^2 \mp 2 P_e \nu_e a_e) \chi_Z ^2 F_2^Z
\]

\[
x \tilde{F}_3^\pm = - (a_e \mp P_e \nu_e) \chi_Z xF_3^{\gamma Z} + (\mp P_e (\nu_e^2 + a_e^2) + 2 \nu_e a_e) \chi_Z ^2 xF_3^Z
\]

-Friederike Januschek DESY On Behalf of the ZEUS Collaboration

High-\(Q^2\) \(e^+p\) Neutral Current Cross Sections at HERA and Determination of the Structure Function \(xF_3\)

- \([F_2^{\gamma}, F_2^{\gamma Z}, F_2^Z] = \sum_q [e_q^2, 2e_q \nu_q, \nu_q^2 + a_q^2] x(q + \bar{q})\)

- \([xF_3^{\gamma Z}, xF_3^Z] = \sum_q [e_q a_q, \nu_q a_q] x(q - \bar{q})\)

- \(\tilde{F}_L \approx \frac{\alpha_s}{8.3} xg\)
Importance of High-Q^2 NC Measurements

- The NC cross sections are a powerful probe of the parton distributions (PDFs).
- The NC cross sections are sensitive to all flavours.
- The difference between the $e^+ p$ and $e^- p$ NC cross sections gives direct access to the structure function $x\tilde{F}_3$.
- The longitudinal polarisation asymmetry, $A^+ \approx a_e \nu_q$ allows parity violation to be directly measured.
HERA and the LHC

- HERA has a large kinematic reach.
- HERA PDFs can be extrapolated into the LHC region (DGLAP evolution).
- HERA data crucial for calculations of measurements and new physics at the LHC.
Neutral Current Sample (e+p Data)

- ZEUS-prel-11-003.
 - This data completes the HERA-II ZEUS high-\(Q^2\) inclusive analyses.

\[e^+ p \text{ data, taken 2006-07, } \mathcal{L} = 135 \text{ pb}^{-1} \]

- \(P_e = +32\% \)
- \(P_e = -36\% \)

\[\mathcal{L} = 78.8 \text{ pb}^{-1} \]
\[\mathcal{L} = 56.7 \text{ pb}^{-1} \]

Kinematic range: \(Q^2 > 185 \text{ GeV} \) and \(y < 0.9 \).

- Data well described.
dσ/dx and dσ/dy with Pe > 0 and Pe < 0

ZEUS

![Graphs showing the results of ZEUS NC e^+ p interactions at HERA](image)

Friederike Januschek DESY
On Behalf of the ZEUS Collaboration

High-\(Q^2 \) e^+ p Neutral Current Cross Sections at HERA and Determination of the Structure Function \(xF_3 \)
Motivation

Summary

\[d\sigma/dx \text{ and } d\sigma/dy \text{ with } P_e > 0 \text{ and } P_e < 0 \]

ZEUS

\[Q^2 > 185 \text{ GeV}^2 \]

- ZEUS NC (prol.)
 - e^+p (78.8 pb\(^{-1}\))
 - SM (HERAPDF1.5)
 \(P_e = +0.32 \)

\[Q^2 > 3000 \text{ GeV}^2 \]

- ZEUS NC (prol.)
 - e^+p (78.8 pb\(^{-1}\))
 - SM (HERAPDF1.5)
 \(P_e = +0.32 \)

\[Q^2 > 185 \text{ GeV}^2 \]

- ZEUS NC (prol.)
 - e^+p (56.7 pb\(^{-1}\))
 - SM (HERAPDF1.5)
 \(P_e = -0.36 \)

\[Q^2 > 3000 \text{ GeV}^2 \]

- ZEUS NC (prol.)
 - e^+p (56.7 pb\(^{-1}\))
 - SM (HERAPDF1.5)
 \(P_e = -0.36 \)

Contributors

Friederike Januschek DESY

On Behalf of the ZEUS Collaboration
The difference between the two polarisation states clearly seen at higher-Q^2.

\leftarrow **RH**: $d\sigma/dQ^2$ with positive P_e.

\leftarrow **LH**: $d\sigma/dQ^2$ with negative P_e.

\leftarrow **RH/LH**: ratio of cross sections with positive P_e/negative P_e.

These results are not included in the shown SM expectation (HERAPDF1.5).
Asymmetry

\[A^+ = \frac{2}{P_+ - P_-} \frac{\sigma^+(P_+) - \sigma^+(P_-)}{\sigma^+(P_+) + \sigma^+(P_-)} \]

- \(A^+ \approx a_e \chi Z \frac{F_2^{\gamma Z}}{F_2} = a_e \chi Z \frac{2e_qv_q}{e_q^2} \propto a_e v_q \)
- \(A^+ \) sensitive to \(v_q \).
- \(A^+ \) increases with \(Q^2 \).
̃σ with $P_e > 0$ and $P_e < 0$

- Closed circles \rightarrow positive P_e.
- Open circles \rightarrow negative P_e.
- Effect of polarisation visible at high-Q^2.

Friederike Januschek DESY
On Behalf of the ZEUS Collaboration
High-\(Q^2\) e^+p Neutral Current Cross Sections at HERA and Determination of the Structure Function xF_3
\[\frac{d\sigma}{dQ^2}, \frac{d\sigma}{dx} \text{ and } \frac{d\sigma}{dy} \text{ with } P_e = 0 \]

- Measurement over large kinematic ranges.
- The results will help further constraining the PDFs.

ZEUS

- ZEUS NC (prel.)
 \(e^+ p (135.5 \text{pb}^{-1}) \)
 \(\text{SM (HERAPDF1.5)} \)
 \(P_e = 0 \text{ (corrected)} \)
\[\tilde{\sigma} \text{ with } P_e = 0 \text{ for } e^+p \text{ and } e^-p \]

- **Closed circles →** Full \(e^+p \) data set.
- **Open circles →** Previously measured unpolarised \(e^-p \tilde{\sigma} \).
- Difference between \(e^+p \) and \(e^-p \) clearly seen.
 - Described well by SM predictions.

Friederike Januschek DESY

On Behalf of the ZEUS Collaboration

High-\(Q^2 \) \(e^+p \) Neutral Current Cross Sections at HERA and Determination of the Structure Function \(xF_3 \)
x\tilde{F}_3 Extraction

\[\tilde{\sigma}^{e^\pm p} = \frac{xQ^4}{2\pi\alpha^2} \frac{1}{Y^+} \frac{d^2\sigma^{e^\pm p}_{NC}}{dx dQ^2} = \]
\[\tilde{F}_2(x, Q^2) \mp \frac{y^2}{Y^+} x\tilde{F}_3(x, Q^2) - \frac{y^2}{Y^+} \tilde{F}_L(x, Q^2) \]

- Difference of \(e^+p \) and \(e^-p \)
 \[\Rightarrow x\tilde{F}_3\text{-extraction}. \]

- Expected to contribute at high-\(Q^2 \).

Friederike Januschek DESY
On Behalf of the ZEUS Collaboration

High-\(Q^2 \) \(e^+p \) Neutral Current Cross Sections at HERA and Determination of the Structure Function \(xF_3\)
For $e^+ p$ and $e^- p$ data combination to extract $x \tilde{F}_3$.

- Difference between $e^+ p$ and $e^- p$ gives xF_3.

\[
x \tilde{F}_3(x, Q^2) = \frac{Y_+}{2Y_-} \left(\tilde{\sigma} e^- p - \tilde{\sigma} e^+ p \right)
\]
Motivation

Summary

\(\tilde{F}_3 \) Extraction

- 135.5 pb\(^{-1}\) e\(^+\) data and 169.9 pb\(^{-1}\) e\(^-\)p data combined to extract \(\tilde{F}_3 \).
- Difference between e\(^+\)p and e\(^-\)p gives \(xF_3 \).

\[
\tilde{F}_3(x, Q^2) = \frac{Y_+}{2Y_-} \left(\tilde{\sigma}e^-p - \tilde{\sigma}e^+p \right)
\]

- Most precise \(\tilde{F}_3 \) measurement.

Friederike Januschek DESY

On Behalf of the ZEUS Collaboration

High-\(Q^2 \) e\(^+\)p Neutral Current Cross Sections at HERA and Determination of the Structure Function \(xF_3 \)
Both the single differential and reduced NC e^+p cross sections have been precisely measured for right- and left-handed polarisation.

This data completes the ZEUS HERA-II High-Q^2 inclusive data.

Effects of polarisation are clearly visible in the e^+p data.

Through the polarisation asymmetry parity violation has been directly measured.

$x\tilde{F}_3$ was extracted → measurement of the valence quarks

Data will help in better constraining the PDFs.
BACKUP
Luminosity and Polarisation

- Luminosity measurement through Bethe-Heitler process $ep \rightarrow e'p\gamma$
- Two independent measurements by Photon Calorimeter and Spectrometer
- Precision: 1.8%
- For this analysis: $\mathcal{L}_{\text{Int}} = 135.5\text{pb}^{-1}$

- Spin rotators to get longitudinal polarisation
- Two independent polarisation measurements
- For 2006/07 e^+p: $P_e(RH) \approx +0.32$ ($\mathcal{L}_{\text{Int}} = 78.8\text{ pb}^{-1}$) and $P_e(LH) \approx -0.36$ ($\mathcal{L}_{\text{Int}} = 56.7\text{ pb}^{-1}$)

Friederike Januschek DESY
On Behalf of the ZEUS Collaboration
The polar angles of the electron and the hadronic system are used for the reconstruction of the kinematic variables (γ_{had}, θ_e).

Result does not depend on the absolute calorimeter energy measurement in the detector.

Best-suited two-variable method.
Reconstruction of Variables - Double-Angle Method

- The polar angles of the electron and the hadronic system are used for the reconstruction of the kinematic variables ($\gamma_{\text{had}}, \theta_e$).
- Result does not depend on the absolute calorimeter energy measurement in the detector.
- Best-suited two-variable method.

\[
Q_{DA}^2 = e^2 \frac{\sin(\gamma_{\text{had}})(1+\cos(\theta_e))}{\sin(\gamma_{\text{had}})+\sin(\theta_e)-\sin(\gamma_{\text{had}}+\theta_e)}
\]

\[
X_{DA} = \frac{E_e}{E_p} \cdot \frac{\sin(\gamma_{\text{had}})+\sin(\theta_e)+\sin(\gamma_{\text{had}}+\theta_e)}{\sin(\gamma_{\text{had}})+\sin(\theta_e)-\sin(\gamma_{\text{had}}+\theta_e)}
\]

\[
Y_{DA} = \frac{\sin(\theta_e)(1-\cos(\gamma_{\text{had}}))}{\sin(\gamma_{\text{had}})+\sin(\theta_e)-\sin(\gamma_{\text{had}}+\theta_e)}
\]