Characterization of the underlying event in p-p collisions in CMS

Hans Van Haevermaet

University of Antwerp

DIS 2012 – Bonn, Germany Hadronic final states – March 29, 2012

The underlying event in p-p collisions

- The underlying event (UE) is everything except the hard scattering:
 - → Initial state radiation (ISR)
 - → Final state radiation (FSR)
 - → Multiple partonic interactions (MPI)
 - ➔ Beam remnants
- Its understanding is crucial for
 - ➔ precision measurements of the Standard Model processes
 - ➔ the search for new physics
- But its dynamics are not well understood
 - → soft & semi-hard interactions
 - → can not be fully described with perturbative QCD
 - phenomenological models in MC involve parameters which must be tuned using data

• Use LHC data to constrain the existing UE models

Phenomenology of multi-parton interactions

Measurements of the UE

- Study the UE activity as a function of the hard scale of the event, and at different centre-of-mass energies
- Different possibilities
 - → <u>at central rapidities</u>

Hard scatter & UE are contained in same η range

- \rightarrow divide ϕ phase space to separate the UE from the hard scatter
- → look at particle densities, energies in the transverse region
- → As function of the hard scatter p_T scale leading jets, Drell-Yan [JHEP 09 (2011) 109]
- → Use different observables: jet area/median
 - \rightarrow no ϕ phase space division needed

→ at forward rapidities

UE observables separated with large $\Delta\eta$ from hard scatter No division of ϕ phase space Possible to study UE ϕ structure

→ look at forward energy densities as a function of central leading jets

Measurements with CMS detector at LHC

• CMS has a very good pseudorapidity coverage: -6.6 < η < 5.2

CASTOR calorimeter $-6.6 < \eta < -5.2$ 14m from IP tungsten/quartz Čerenkov detector 16 ϕ segmentations 14 modules in z

- Complementary approach to existing central UE measurements
 - → clean separation of the hard interaction from the soft components
 - → Drell-Yan: experimentally clean, theory well understood
 - → absence of QCD FSR & low probability of photon brehmsstrahlung from muons
- Measure particle & energy densities in central region:
 - ➔ average number of primary charged particles
 - \rightarrow average of the scalar sum of p_T of the particles
 - → central charged particles: $p_T > 0.5$ GeV/c, $|\eta| < 2$ (muons from DY excluded)

• Study the UE activity as function of

 $(81 \text{ GeV/c}^2 < M_{\mu\mu} < 101 \text{ GeV/c}^2)$

- → the di-muon p_T : to minimize background, study dependence in narrow mass window
 - energy scale sufficiently large to saturate MPI

➔ probes ISR spectrum

→ the di-muon mass: - look at wide $M_{\mu\mu}$ range for di-muon $p_T < 5$ GeV/c

→ verify MPI saturation

- Drell-Yan event selection:
 - → exactly 2 opposite charge isolated muons with $p_T > 20$ GeV/c, $|\eta| < 2.4$ from vertex well centered around the beam-spot
 - → charged particles for UE: central high purity tracks from primary vertex $p_T > 0.5 \text{ GeV/c}, |\eta| < 2, \sigma(p_T)/p_T < 5\%$
- Study energy scale dependence of MPI as function of $M_{\mu\mu}$: → limit ISR: di-muon $p_T < 5$ GeV/c

Dependence of UE activity vs di-muon p_{T} for 81 GeV/ c^2 < M_{uu} < 101 GeV/ c^2

At this energy scale \rightarrow MPI saturated \rightarrow p_T dependence sensitive to ISR

Towards & transverse region: \rightarrow slow growth in particle & energy density

with increasing di-muon p_{T}

→ Madgraph with tune Z2 describes the data well → Powheg Z2 & Pythia8 4C fail to describe the data (but agree at low p_{T})

Away region:

mostly sensitive to spectrum of hardest emission → equally well described by all tunes & generators

UE activity with jet area/median

- Alternative method to study the UE activity at central rapidity
- Measure the soft hadronic activity by calculating the ratio of the jet p_T and the area covered by this jet in the (η, ϕ) plane for all jets in the event
- Introduce event variable: $\rho = \underset{j \in \text{jets}}{\text{median}} \left[\left\{ \frac{p_{\text{T}j}}{A_j} \right\} \right]$
 - → median: robust to outliers in the distribution, these can be hard interactions
 - → ρ thus naturally isolates UE contributions assuming that the majority
 of the event is dominated by soft interactions
 - ➔ no geometrical slicing of phase space needed
- Use track-jets reconstructed with k_T algorithm, R = 0.6 within $|\eta| < 1.8$
 - → input tracks: $p_T > 0.3$ GeV/c, $|\eta| < 2.3$
 - → on hadron level: stable charged particles with $p_T > 0.3$ GeV/c, $|\eta| < 2.3$
- Basic event selection: minimum bias (inclusive) events
 study the jet area/median observable as a function of the leading track-jet

UE activity with jet area/median (II)

• First look at the inclusive event distributions of the jet area/median

UE activity with jet area/median (III)

- Event scale dependency: jet area/median distribution vs leading jet
 - → both peak values and widths of the distributions change
 - \rightarrow increase of UE activity with p_T

- Characterize UE behavior by plotting the means as a function of leading jet $\ensuremath{p_{T}}$
 - amount of events with very high activity is underestimated
 - implications on treatment of jet energy corrections using area-based methods
 - → Tune Z1, Z2, 4C are to low at 7 TeV

Study of UE activity at forward rapidity

• Measure the Underlying Event (UE) activity by comparing energy density in CASTOR (-6.6 < η < -5.2) for minimum bias events w.r.t. events with a hard scale present

Study of UE activity at forward rapidity (II)

• Hard-to-inclusive ratio vs leading charged jet p_T at $\sqrt{s} = 0.9, 2.76, 7$ TeV

At 0.9 TeV: ratio below 1 production of central hard jets accompanied with higher UE activity depletes energy of the proton remnant which fragments in CASTOR At 7 TeV well known UE behaviour: fast increase at low p_T followed by a plateau above $p_T=8$ GeV/c

At 2.76 TeV the increase of the ratio is much reduced

→ Pythia tunes fitted to LHC (Z2*, 4C) & Herwig 2.5 describe data well

→ Older tune Pythia6 D6T fails to describe the results

Study of UE activity at forward rapidity (III)

- Normalized energy density vs \sqrt{s} :
 - → normalized to 2.76 TeV (minimize systematic uncertainties)
 - → for both inclusive and hard scale (leading charged jet, $p_T > 10$ GeV/c, $|\eta| < 2$) events

• Increase of the UE activity with centre-of-mass energy very challenging

Summary

- Study of the Underlying Event activity is done (ongoing) in many ways in CMS
 - → at central rapidity using leading jets and Drell-Yan as hard scales to measure particle & energy densities, and novel observables as jet area/median
 - → at forward rapidity using leading jets to measure the relative energy densities
 - → at 3 different centre-of-mass energies: 0.9, 2.76 and 7 TeV
- Models tuned to LHC data can describe many aspects of the UE
 - → evolution of central & forward energy densities as function of the hard scale of the event (central leading jets & Drell-Yan process)
 - \rightarrow behavior of the jet area/median as a function of the central leading jet p_T
 - → universality of the UE description
- Notable discrepancies
 - \rightarrow UE activity in the towards & transverse regions in Drell-Yan at high p_T
 - → relative increase of forward energy density in inclusive and hard scale events

Backup slides

UE activity with the jet area/median approach

Study of UE activity at forward rapidity

• Measure the Underlying Event (UE) activity by comparing energy density in CASTOR (-6.6 < η < -5.2) for minimum bias events w.r.t. events with a hard scale present

Minimum bias (inclusive events)

- → energy density not much affected by MPI
- \rightarrow non-diffractive dominated event sample characterized by ξ cuts

Study of UE activity at forward rapidity

• Hard-to-inclusive ratio vs leading charged jet p_T at $\sqrt{s} = 0.9, 2.76, 7$ TeV

At 0.9 TeV: ratio below 1 production of central hard jets accompanied with higher UE activity depletes energy of the proton remnant which fragments in CASTOR At 7 TeV well known UE behaviour: fast increase at low p_T followed by a plateau above $p_T=8$ GeV/c

At 2.76 TeV the increase of the ratio is much reduced

➔ None of the tunes can fully describe the data