Production of Z and W bosons in association with heavy quarks at CMS

Marco Musicha
for the CMS Collaboration

(a)INFN Sez. Torino

DIS 2012
Bonn, Germany
26th-30th March 2012
The CMS experiment is well suited to look for $V+\text{heavy quarks}$ signatures, thanks to its good b tagging performances and robust lepton reconstruction.

Analysis of $V+\text{heavy quarks}$ performed in CMS:

- $Z + b(b)$, jet based (on 2011 dataset: 2.1 fb^{-1})
- $Z + bb$, secondary vertex based (on 2011 dataset: 4.6 fb^{-1})
- $W + c$ (on 2010 dataset: 36 pb^{-1})

Motivations for these channels:

- $Z + b(b)$ (main focus of this talk)
 - Measure cross-section with 1 b jet, 2 b jets, 2b in 1 jet \Rightarrow confirm/constrain NLO cross-section and kinematics predictions.
 - Benchmark to $bb + \Phi$ discovery channel in MSSM with large $\tan\beta$
 - Background to new physics (e.g. $H \rightarrow ZZ \rightarrow 4\ell$, $pp \rightarrow Z(\ell\ell) + A(bb)$) and SM $Zh, h \rightarrow bb$.
- $W + c$ \Rightarrow put constraints on strange quark PDF of the proton in the intermediate x region
Motivations for detailed $Z + b(\bar{b})$ measurements

- Cross-section calculations: two different schemes should agree at NLO. Preliminary results show difference up to 30% between them. $Z + b$ cross-section measurement could help to resolve it.

- **Fixed flavor scheme**

- Massive b

- Full event description → aMC@NLO

- Several production mechanisms at the LHC: b quarks fusion, gluon splitting, Z radiation, and Multiple Parton Interactions

- **Variable flavor scheme**

- Splitting inside proton PDF

- Massless b → Collinear approach

- Angular correlations of bb pair → comprehension of production mechanism
Cross section definition for $pp \rightarrow Z/\gamma^* + b$ (CMS EWK-11-012)

The $pp \rightarrow Z/\gamma^* + b, Z/\gamma^* \rightarrow \ell\ell$ cross-section is calculated as:

$$
\sigma_{hadron}(Z/\gamma^* + b, Z/\gamma^* \rightarrow \ell\ell) = \frac{N_{\ell\ell+b} \times (P - f_{t\bar{t}})}{A_\ell \times C_{hadron} \times \epsilon_\ell \times \epsilon_b \times \mathcal{L}}
$$

- $N_{\ell\ell+b}$ is the selected number of di-leptons+b events
- P is the b-jet purity, $f_{t\bar{t}}$ contamination of $t\bar{t}$ events
- ϵ_ℓ and ϵ_b are lepton and b-tagging efficiencies (computed scaling simulation to match efficiencies in data)
- A_ℓ is the lepton acceptance
- C_{hadron} a correction factor for detector and reconstruction effects
- \mathcal{L} is the luminosity

The cross section is defined with the following requirements:

(i) $p_T^b > 25$ GeV and $|\eta^b| < 2.1$ on any hadron jet containing a b hadron;
(ii) $60 < m_{\ell\ell} < 120$ GeV for the invariant mass of the di-lepton;
(iii) $\Delta R(jet, \ell) > 0.5$ angular separation between any jet and the Z leptons
Event selection for $Z/\gamma^* + b$ jets

Z from isolated leptons:
- $p_T^{e(\mu)} > 25(20)$ GeV
- $|\eta_{e(\mu)}| > 2.5(2.1)$
- $60 < m_{\ell\ell} < 120$ GeV
- ID criteria + match with HLT objects

Jet selection:
- anti-$k_T (R = 0.5)$
- $p_T > 25$ GeV
- $|\eta| < 2.1$
- jet lepton separation $\Delta R(\ell, jet) > 0.5$

b-tagging:
- Detached secondary vertex (with at least 3 tracks)
- 1 b-tag eff. $\simeq 35\%$
- udsg-mistag $\simeq 0.1\%$
Data-MC comparison for $pp \to Z/\gamma^* + b$

- After rescaling simulation to match data efficiencies, good agreement in overall normalization is found between Data and LO MonteCarlo (Madgraph) rescaled to the NLO cross-section. Some discrepancies in the shapes of kinematic variables.

Figure: p_T of the leading-p_T b (left), p_T of the dilepton pairs and (right) $\Delta \phi(Z, \text{leading-p}_T \text{ b jet})$ after the high purity b-tagging selection. The yellow bands in the lower plots represent the statistical uncertainty in the MC yield.
Estimation of the backgrounds ($Z/\gamma^* + \text{light or charm and } t\bar{t}$)

- The $Z + \text{ucdsg}$ background is estimated assessing the b-purity of the $Z + \text{tagged jets}$ sample. The (data driven) extraction of the purity P is based on a template fit of the mass of the secondary vertex of the tagged jet.

Figure: Secondary vertex mass in $Z+$tagged jet sample. Left: electron channel, right: muon channel.

- The $t\bar{t}$ background is extracted from extrapolation of upper sideband of $m_{\ell\ell}$ under the signal region:

$$N_{t\bar{t}}^{\text{est}}(\text{in}) = \left(\frac{R_{t\bar{t}}^{MC}}{R_{Z}^{MC} - R_{t\bar{t}}^{MC}}\right) \cdot (R_{Z}^{MC} \cdot N_{\text{obs}}(\text{out}) - N_{\text{obs}}(\text{in})) \quad R_{t\bar{t}(Z)}^{MC} = \frac{N_{t\bar{t}(Z)}^{MC}(\text{in})}{N_{t\bar{t}(Z)}^{MC}(\text{out})}$$
Extraction of the $Z/\gamma^* + b$ cross-section and comparison with theory

- The detector level yield after correcting for lepton (ϵ_ℓ) and b-tagging (ϵ_b) efficiencies is further corrected with $(A_\ell \cdot C_{hadron})$ taking into account the lepton acceptance and detector resolution.

- The final cross-section is calculated separately in the $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ channels, which are found in agreement and then combined:

<table>
<thead>
<tr>
<th>$\sigma_{hadron}(Z + b, Z \rightarrow \ell\ell)$</th>
<th>cross-section (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.10 ± 0.08 (stat) ± 0.79 (syst) $+0.25-0.57$ (theory)</td>
</tr>
</tbody>
</table>

- Parton level NLO calculations obtained with the MCFM tool
 \[\Rightarrow \sigma_{parton}^{MCFM} = 4.73 \pm 0.54 \text{ pb} \]

- Parton-to-hadron level correction $C_{NP} = 0.84 \pm 0.03$ is computed using MADGRAPH+PYTHIA and aMC@NLO+HERWIG.

- Final hadron-level-corrected NLO prediction $\sigma_{hadron}^{MCFM} = 3.97 \pm 0.47 \text{ pb}$

- The measured cross-section in data is found smaller than the hadron-level-corrected NLO prediction.
Event selection for $Z/\gamma^* + bb$ (CMS SMP-12-003)

- Same lepton and jet selection as for the inclusive case
- Use high efficiency discriminant ($1\ b$-tag eff. $\approx 55\%$, $udsg$-mistag $\approx 1\%$) to keep higher yields \Rightarrow higher $t\bar{t}$ content in the selection
- Signal defined in a smaller region in di-lepton mass $76 < m_{\ell\ell} < 106$ GeV and $\slashed{E}_T < 50$ GeV cut reduces $t\bar{t}$ background
Background estimation for $Z/\gamma^* + bb$

- $t\bar{t}$: suppressed with E_T and $m_{\ell\ell}$ cuts. Estimated with fit to $m_{\ell\ell}$
- $Z + ucdsg$: data driven (b-purity) estimated with two 1D simultaneous template fits to secondary vertex mass distributions. Event purity:

$$f_{bb} = 1 - f_{cc} - f_{bl} - f_{lb}$$

ZZ: from MC normalized to data using CMS cross section σ_{ZZ} measurement

<table>
<thead>
<tr>
<th></th>
<th>$\mu\mu + bb$</th>
<th>$ee + bb$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yields</td>
<td>219</td>
<td>148</td>
</tr>
<tr>
<td>bb-purity</td>
<td>$(83 \pm 6)%$</td>
<td>$(83 \pm 6)%$</td>
</tr>
<tr>
<td>$t\bar{t}$ frac.</td>
<td>$(20 \pm 5)%$</td>
<td>$(17 \pm 5)%$</td>
</tr>
<tr>
<td>$N_{Z(\ell\ell)Z(bb)}$</td>
<td>5.2 ± 0.2</td>
<td>3.0 ± 0.2</td>
</tr>
</tbody>
</table>
Measurement of the $Z/\gamma^* + bb$ cross-section in multiplicity bin

- $Z + 1b$ and $Z + 2b$ yields at hadron level: unfold b-jet multiplicity
- number b-tagged jets \rightarrow reconstructed b-jets \rightarrow hadron-level b-jets
- unfold via the matrix equation:

$$N_{Z+ib}^{\text{gen}} = [(A^{-1}_\ell)_{ij}]_{\text{optional}} \times (\epsilon^{-1}_r)_{jk} \times (\epsilon^{-1}_\ell)_{kl} \times (\epsilon^{-1}_b)_{lm} \times N_{Z\text{sel}+mb}^{\text{tag}}$$

- The cross-sections in b jets multiplicity bins are found to be:

<table>
<thead>
<tr>
<th>Multiplicity bin</th>
<th>$\sigma \pm \delta^{\text{stat}}\sigma \pm \delta^{\text{syst}}\sigma \pm \delta^{\text{theo}}\sigma$ (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\text{hadr}}(Z(\ell\ell) + 1b)$</td>
<td>$3.41 \pm 0.05 \pm 0.27 \pm 0.06$</td>
</tr>
<tr>
<td>$\sigma_{\text{hadr}}(Z(\ell\ell) + 2b)$</td>
<td>$0.37 \pm 0.02 \pm 0.07 \pm 0.02$</td>
</tr>
<tr>
<td>$\sigma_{\text{hadr}}(Z(\ell\ell) + b)$</td>
<td>$3.78 \pm 0.05 \pm 0.31 \pm 0.08$</td>
</tr>
</tbody>
</table>

- Cross-sections reported here are the combination of muon and electron channels and are corrected for common minimal lepton acceptance A_ℓ ($p_T^{\ell} > 20$ GeV and $|\eta|^{\ell} < 2.5$)

Migration matrix between generator and detector level yields
Data MC comparison of $Z/\gamma^* + bb$

Figure: Left: $\Delta\phi(Z, bb$ pair), center p_T of the sub-leading jet, and p_T distribution of the bb pair after the baseline selection. The black band in upper plots is the systematic uncertainty due to jet energy uncertainty and b-tagging uncertainty. The yellow bands in the lower plots is the statistical uncertainty in the MC yield.

- Some discrepancies in the data/MC comparison of kinematic properties ⇒ need further studies, NLO MC simulations.
BB angular correlations with $Z/\gamma^* + bb$ (CMS EWK-11-015)

- The identification of displaced secondary vertices with no use of jets allows to study BB pair production also at small angular separation
- B hadron candidates are reconstructed using the *Inclusive Vertex Finder (IVF)*. Using high impact parameter tracks seeds, additional tracks clustered in L_{3D}/σ_{3D} and angular separation ΔR. Secondary vertices from charm cascade decays are merged to B decays
- Very good angular resolution in B hadron flight direction ($\simeq 0.02$ in ΔR)

Figure: Left: sketch of the IVF tool, Right: mass of the leading B candidate, in the top dominated region $m(\ell\ell) > 120$ GeV
\(\Delta R(BB)\) angular distribution shape in \(Z/\gamma^* + bb\) events

- The \(\Delta R(BB)\) shape is calculated via:
 \[
 \frac{1}{\sigma} \frac{d\sigma}{d\Delta R(BB)} \Rightarrow \frac{1}{\sigma_{visible}} \frac{N_{i, \text{data, fit}}^d \cdot P_i}{\epsilon_i^{2SV} \cdot \epsilon_i^\ell \cdot A^\ell} \quad i = \Delta R \text{ bin}
 \]

- In each \(\Delta R\) bin \(i\), \(N_{i, \text{data, fit}}^d\) is extracted from a M.L. fit to \(m_{\ell\ell}\)
- \(N_{i, \text{data, fit}}^d\) corrected for the IVF purity \(P_i\), the IVF efficiency \(\epsilon_i^{2SV}\) and the dilepton efficiency and acceptance \((\epsilon_i^\ell \cdot A^\ell)\). Each bin normalized by \(1/\sigma_{visible}\)
- Comparison with LO and NLO predictions shows discrepancies with both

![Graphs showing the comparison between data and MC predictions for \(\Delta R(BB)\) angular distribution](image-url)
W+charm measurement motivations (CMS EWK-11-013)

- Process $pp \rightarrow W + c + X$ sensitive to the proton strange quark content
- At the LHC it is dominated by $\bar{s}g \rightarrow W^+\bar{c}$ and $sg \rightarrow W^-c$
- Processes like $\bar{d}g \rightarrow W + \bar{c}$ and $dg \rightarrow W^-c$ are Cabibbo disfavoured
- Processes with b quarks in the final state are even more suppressed ($1 \div 2\%$) \implies more than 10\% of the $W + jets$ events at the LHC with $p_T > 20$ GeV, contain c jets

![Diagram of W+charm process](image)

- The cross section ratios:
 \[R_{+/−} = \frac{\sigma(W^+ + \bar{c} + X)}{\sigma(W^- + c + X)} \quad R_c = \frac{\sigma(W + c + X)}{\sigma(W + jets + X)} \]

 provide important information on the strange and anti-strange quark parton density functions of the proton at the electroweak scale
$W+\text{charm}$ cross-section ratios measurements

- The ratios are measured using $W \rightarrow \mu\nu$ decays in the kinematic region $p_T^j > 20$ GeV, $|\eta_j| < 2.1$ and with $p_T^\mu > 25$ GeV, $|\eta_\mu| < 2.1$, $M_T(\mu\nu) > 50$ GeV.

Discriminator based on the significance of a 2-track secondary vertex decay length

$$D_{SSVHE} = \text{sign}(S) \cdot \log(1 + |S|)$$

$$S = L_{3D}/\sigma_{L_{3D}}(SV)$$

- the charm fraction in the selected $W + \text{jets}$ sample extracted from a M.L. fit to the different components of the distribution of the D_{SSVHE} discriminator

| $R_{+/−}$ | $0.92 \pm 0.19 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$ |
| R_c | $0.143 \pm 0.015 \text{ (stat.)} \pm 0.024 \text{ (syst.)}$ |

- Results are in agreement with theoretical predictions at next-to-leading order based on available parton distribution functions.
Conclusions

• Using 2010 and 2011 CMS collision data at $\sqrt{s} = 7$ TeV, preliminary measurements of the $Z + b(b)$ cross sections and angular correlations have been presented. The cross-sections have been measured with a total uncertainty of $\simeq 1.3\%$(stat.$) \oplus 12\%$(syst.) for the inclusive $1b$ case and of $\simeq 5\%$(stat.$) \oplus 19\%$(syst.) for the inclusive $2b$ case.

• Some discrepancies in kinematic properties with LO Monte Carlo prediction have been found.

• The study of the BB angular correlations in $Z + bb$ events shows partial disagreement with both LO and NLO predictions.

• Finally, the study of the $W + c$ production rate with respect to the W charge and W+light jets rates, measured with a total uncertainty of $\simeq 20\%$, has also been presented.

CMS EWK-11-012 Measurement of the $Z/\gamma^* + b$-jet cross section in pp collisions at $\sqrt{s} = 7$ TeV

CMS SMP-12-003 Measurement of the $Z/\gamma^* + bb$-jets cross section in pp collisions at $\sqrt{s} = 7$ TeV

CMS EWK-11-015 Angular correlation between B hadrons produced in association with a Z boson in pp collisions at $\sqrt{s} = 7$ TeV

CMS EWK-11-013 Measurement of associated charm production in W final states at $\sqrt{s} = 7$ TeV
Backup slides
Lepton efficiencies with Tag & Probe

- **Z** mass constraint from a pair of same flavor leptons: one tag (high purity), the other probe (to measure efficiency given a criterium)

- After di-lepton+jet event topology ⇒ **Tag = tight selected lepton**

\[\epsilon_{\text{lepton}} = \epsilon_{\text{trk}} \times \epsilon_{(\text{reco}|\text{trk})} \times \epsilon_{(\text{id}|\text{reco})} \times \epsilon_{(\text{iso}|\text{id})} \times \epsilon_{(\text{trg}|\text{iso})} \]

- Double lepton trigger efficiency: on each leg separately, tag matched to loosest unprescaled single lepton trigger.

\[\epsilon_{\text{trig}} = \left(\epsilon_{L1} \times \epsilon_{H2} \right) + \left(\epsilon_{L2} \times \epsilon_{H1} \right) - \left(\epsilon_{H1} \times \epsilon_{H2} \right) \]

L=Low threshold, H=high threshold

b-tag efficiencies

- Estimate per jet efficiency, measured on signal MC sample reweighed to reproduce per-jet btagging efficiency measured in data

- use data/MC scale factors \(SF_b, SF_c, SF_l \); \(SF = \epsilon_{\text{DTA}}/\epsilon_{\text{MC}} \)

- MC b-tag efficiency and c-mistag: from \(Z + b \) and \(Z + c \) MC sample

- MC event weight calculated taking into account all possible mistag combinations
Comparison of $W+charm$ results with theoretical predictions

- Constraint of the PDF from the ratios:
 \[R_{+/−} = \frac{\sigma(W^+ + \bar{c})}{\sigma(W^- + c)} \quad R_c = \frac{\sigma(W + c)}{\sigma(W + jets)} \]

- CMS measurement has still large experimental uncertainties, but clearly towards discrimination between PDF sets
- Strangeness is where larger differences between PDF sets are found
- Experimental uncertainties to be reduced with the 2011 dataset