“Search for Large Extra Dimensions, Leptoquarks and Heavy Quarks at CMS”

Sushil Chauhan
(University of California, Davis)
For the CMS Collaboration

DIS 2012: XX International Workshop on Deep-Inelastic Scattering and Related Subjects
March 26-30, 2012
University of Bonn, Germany
Outline

✦ Brief introduction and search for large extra dimensions (LED) at CMS:
 ✤ Di-photon, di-electron and di-muon production
 ✤ Photon+MET and jet+MET final states

✦ Introduction and searches for leptoquarks

✦ Heavy quark searches:
 ✤ Di, tri-lepton and lepton+jet channel
 ✤ t'/b' inclusive searches and
 ✤ vector-like quark production

✦ Summary and future prospects

Results in this talk are also available as public results of CMS at the following link:
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
Large Extra Dimension (LED)

- Large extra dimensions can explains the large difference between the Plank and electroweak scale, the so-called hierarchy problem

- Gravity could propagate in these extra dimensions while SM particles in 4D space-time

- Introduce a new scale M_D:
 \[M_{Pl}^2 = M_D^{n+2} R^n \]

- At $M_D \sim M_W$, the observed large value of M_{Pl} is only a consequence of large R and it depends on n extra dimensions
The visible signal is two high \(P_T \) isolated photons with modest backgrounds.

Look for excess of events in diphoton invariant mass for ADD.

ADD Limits: \(M_s > 2.3-3.8 \) TeV

Figure:
- Plot showing CMS exclusion limits for \(M_\text{eff} \) and coupling \(K \) at 7 TeV.
- Graph displaying CMS data with observed and expected distributions for dijet, diphoton, and \(\gamma+\text{jet} \) channels.

References:
Di-lepton Search: LED

- Isolated muons and electrons
 - for di-electron: Opposite charges and at least one barrel electron
 - for muon channel no such requirement

- Non-DY background contributions are small and include: $t\bar{t}$, γ+jet, W+jet etc..

- For DY simulated background the correction factors are estimated in the signal region:
 - Radiation effect, QCD correction (NNLO)

- Main source of systematic uncertainty: PDF and higher orders for DY

ADD limits: $M_s > 2.5$-3.8 TeV

CMS Search in 2.3 fb$^{-1}$

Figures:
- Data distribution for $M_{\mu\mu}$
- ADD limits for different n values

CMS EXO-11-087, Accepted by PLB

Tuesday, March 27, 2012
Photon+MET : LED

- Clean signal with P_T high photon and large missing-E_T
- $qqbar \rightarrow \gamma G$

- Event counting to look for an excess in P_T or Missing-E_T
- SM $Z(\nu\nu)\gamma$ production is main background, rest comes from QCD, non-collision sources

$\int Ldt = 4.7 \text{ fb}^{-1}$

$\sqrt{s} = 7 \text{ TeV}$

$\sum p_T^\gamma [\text{GeV}]$

$\int Ldt = 4.7 \text{ fb}^{-1}$

CMS Preliminary

$\sum p_T^\gamma [\text{GeV}]$

$\int Ldt = 4.7 \text{ fb}^{-1}$

CMS Preliminary

$\sum p_T^\gamma [\text{GeV}]$

$\int Ldt = 4.7 \text{ fb}^{-1}$

CMS LO ($\gamma + E_T$)

CMS NLO ($\gamma + E_T$)

CDF ($\gamma + E_T$)

D0 ($\gamma + E_T$)

LEP ($\gamma + E_T$)

Lower Limit on $M_{\text{XP}} [\text{TeV}]$

Number of Extra Dimensions

$\sum p_T^\gamma [\text{GeV}]$

$\sum p_T^\gamma [\text{GeV}]$
Jet+ MET : LED

CMS Search in 4.7fb⁻¹

✧ Relatively large production and clean final state with high \(P_T \) jet and large missing-\(E_T \)
✧ \(q\bar{q} \rightarrow gG, qg \rightarrow qG, gg \rightarrow Gg \)
✧ Main background: \(Z \rightarrow \nu\nu \) and \(W+\)jets

✧ \(M_D > 2.49 - 4.44 \) TeV for \(n_{ED} = 2-6 \)

\[\sigma \left(\frac{pb}{f b} \right) \]

\[\int L dt = 4.7 \, fb^{-1} \text{ at } \sqrt{s} = 7 \, TeV \]

\[M_D [TeV/c²] \]

\[E_T^{miss} [GeV] \]

\[\nu\nu \rightarrow Z \nu \rightarrow Wt \]

\[\nu\nu \rightarrow Z \nu \rightarrow Wt \]

\[qq \rightarrow gG, qg \rightarrow qG, gg \rightarrow Gg \]

\[Z \rightarrow \nu\nu \] and \(W+\)jets
Leptoquark Searches at CMS

✧ Possibility of a fundamental relationship between quarks and leptons through leptoquarks
 ✧ they are colored and have fractional charge
 ✧ couples to quarks and leptons with coupling λ
 ✧ branching fractions are denoted as: $\beta(lq)$ and $1 - \beta (vq)$

✧ CMS searched for all 3 generation of leptoquarks with following final states:
 ✧ $llqq$ ($\beta = 1$) where $l = e, \mu$
 ✧ $lvqq$ ($\beta = 0.5$)
 ✧ $bb\nu\nu$

✧ Limits are set on mass of leptoquarks (M_{LQ})
1st Generation Scalar Leptoquarks

- Isolated electron + missing-\(E_T\)
- Main bkg: ttbar, W+jets (for evqq)
 ttbar, Z+jets (for eeqq)

\[S_T = P_{T(l_1)} + P_{T(l_2)} + P_{T(j_1)} + P_{T(j_2)} \]

- Limits: \(M_{LQ} > 339 \text{ GeV (384 GeV)}\) for evqq (eeqq)

PLB 706(2011) 246-266

PRL 106, 201802 (2011)
2nd Generation Scalar Leptoquarks

Final state: $\mu\muqq$ and $\mu\nuqq$

- $P_T(\mu) > 40$ GeV, $P_T(\text{jets}) > 30$ GeV

In addition for $\mu\nuqq$ channel:

- Veto on 2nd muon and 3rd jet and electron
- $\text{missing}-E_T > 45$ GeV

- The dominant backgrounds are estimated from data

- Multi-jet QCD background is negligible in both final states

Limits:

- $M_{LQ} > 632$ GeV for $\beta=1.0$
- $M_{LQ} > 523$ GeV for $\beta=0.5$
3rd Generation Scalar Leptoquarks

Final state: bbνν

- Used *razor* variable $R \equiv \frac{M^R_T}{M_R}$

 $$M_R \equiv \sqrt{(E_{j1} + E_{j2})^2 - (p_T^{j1} + p_T^{j2})^2}$$

 $$M^R_T \equiv \sqrt{\mathcal{H}_T(p_T^{j1} + p_T^{j2}) - \mathcal{H}_T \cdot (\mathcal{p}_T^{j1} + \mathcal{p}_T^{j2})}$$

- Designed to search for a pair of “heavy particles”

- 2 b-tagged jets

- Main Bkg: 1) Heavy Flavor (HF) Multi-jet
 2) ttbar+jets and W/Z+HF jets

- Systematics: background shape and b-tagging efficiency

Limit: $M_{LQ} > 350$ @ 95%CL
Heavy Quarks

✦ SM Extension?: Adding one more generation of quarks is an obvious extension of SM and is also not fully excluded by electroweak precision data

✦ Due to heaviness of this new generation of quarks the CP violation can be boosted by large factor and could resolve the matter-antimatter asymmetry in the universe

Decay signatures for direct searches:
✦ $t' \rightarrow bW$, $b' \rightarrow tW(bWW)$: complex final state, $b' \rightarrow qW$
✦ With small mass splitting: $|M_{t'} - M_{b'}| < M_W$
$t' \bar{t}' \rightarrow W^+ bW^- \bar{b} \rightarrow l^+ \nu b l^- \bar{\nu} b$

✦ Signal: 2 leptons + 2 b-jets + missing-E_T

✦ Reconstruct "b-jet + lepton" masses

$M_{t'} > 552$ GeV @95% CL

CMS Search in 4.7 fb$^{-1}$
Reconstruction of a pair of “heavy tops”:
- 1 lepton + 4 jets + at least 1 b-jet + missing-\(E_T\)

Kinematic fit is applied for mass reconstruction (\(M_{\text{fit}}\)) and look for \(H_T\) and reconstructed mass tail for signal

\[
H_T = p_T^{\text{lepton}} + p_T^{\text{miss}} + \sum p_T^{\text{jets}}
\]

Top towards lower \(H_T\) and \(M_{\text{fit}}\)

Signal towards higher \(H_T\) and \(M_{\text{fit}}\)

- \(M_{t'} > 560\) GeV @95% CL

CMS Search in 4.7 fb\(^{-1}\)

CMS preliminary \(\sqrt{s} = 7\) TeV, 4.7 fb\(^{-1}\), e+jets

CMS preliminary \(\sqrt{s} = 7\) TeV

CMS simulation \(\sqrt{s} = 7\) TeV

CL\(_S\): \(\mu +\text{jets (4.6fb}^{-1}\), e+jets (4.7fb\(^{-1}\)

- observed 95% C.L.
- expected
- ±1\(\sigma\) expected
- ±2\(\sigma\) expected
- \(t'_\text{THEORY}\)

Tuesday, March 27, 2012
b' Search (di-lepton, tri-lepton)

- 3 leptons + 2jets OR 2 same sign leptons + 4jets
- at least 1 b-jet, missing-E_T
- $S_T > 500$ GeV where,
 $$S_T = |E_T^{miss}| + \sum |p_T^l| + \sum |p_T^{jet}|$$
- Almost no background

$M_{b'} > 600$ GeV @ 95% CL

CMS EXO-11-036
Why not look for b' and t' at the same time with a single production?

- For simplicity degenerate masses are assumed and no $t' \leftrightarrow b'$ transition
- A convenient way to express the CKM4 matrix is to express it in terms of free parameter A where $A = |V_{tb}|^2 = |V_{t'b'}|^2$

These channels will be possible:

\[
\begin{align*}
t'b & \rightarrow bWb \\
b't & \rightarrow tWbW \rightarrow bWWbW \\
t't' & \rightarrow bWbW \\
b'b' & \rightarrow tWtW \rightarrow bWWbWW
\end{align*}
\]

- Look for 1 isolated muon ($W \rightarrow \mu \nu$), missing-E_T and at least one jet with $P_T(jet) > 30$ GeV

- Classify events by number of b-jets and W multiplicity
b′/t′ Inclusive Search (2)

\[H_T = p_T^l + \sum p_T^{jet} + E_T^{miss} \]

Scanning of mass limit as a function of \(A \)

\[M_{b'} = M_{t'} > 590 \text{ GeV} @ 95\% \text{ CL} \]
Vector-like Heavy Quarks: \(T \rightarrow tZ \)

- **Pair production of** \(T \rightarrow tZ \)
 - tag a \(Z(\ell\ell) \) + an isolated lepton + \(\geq 2 \) jets

- **Define:** \(R_T = \sum p_T \) (jets, excluding leading two)
 + \(\sum p_T \) (leptons, excluding leading two)

- **Assuming 100% branching fraction**
 - \(M_T > 475 \) GeV @ 95% CL

PRL 107, 271802 (2011)
2011 data taking at CMS was very successful. Many analyses with different final states have set the most stringent limits. In a nutshell:

- for LED the limits are extend up to $M_D > 2.49 - 4.44$ TeV for $n_{ED} = 2-6$

- for leptoquarks the lower limits on mass are set to $M_{LQ} > 632(523)$ GeV for $\beta=1.0(0.5)$ from 2nd generation searches

- the limits on heavy quark masses are extended to $M_{t'} > 560$ GeV and $M_{b'} > 600$ GeV from pair production searches
Future Prospects

- Analyses to cover a wider parameter space
- Combine limits from many different final states to improve sensitivity
- Some heavy quark analyses based on 100% branching fraction, what if we relax this assumption?
 - e.g., for $T \to tZ$ determine limits as function of BF and T mass and low BF could be cover with $t' \to bW$
 - a combined limit

- If we see signal then how to discriminate it from similar signatures e.g., SUSY etc.

Thank you!
Selection for muon and electron:
- Isolated muons and electrons
- $P_T(\mu) > 45$ GeV, $|\eta| < 2.1$
- $P_T(e) > 35$ GeV (45 GeV) for barrel/endcap
- opposite charge and at least one barrel electron

The main source of systematic uncertainty
- Trigger and reconstruction efficiency: Signal: ~ 3-4%, Background: $\sim 3\%$
- Electron energy scale: 1-3%
- PDF and higher order (for DY):
 - Background: ~ 10-13%
Table 2: Comparison of the observed and expected number of events in control and signal regions for the dimuon and dielectron mass distributions. Expected signal contributions are shown for $\Lambda_T = 2.8$ TeV (ADD K-factor 1.0, signal truncation at $M_{\text{max}} = \Lambda_T$).

<table>
<thead>
<tr>
<th>Mass region [TeV]</th>
<th>N_{obs}</th>
<th>Background expectation</th>
<th>Signal exp. $\Lambda_T = 2.8$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control regions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.14–0.20</td>
<td>3723</td>
<td>3690±300</td>
<td>-</td>
</tr>
<tr>
<td>0.20–0.40</td>
<td>1674</td>
<td>1605±160</td>
<td>-</td>
</tr>
<tr>
<td>0.40–0.60</td>
<td>131</td>
<td>122±13</td>
<td>-</td>
</tr>
<tr>
<td>0.60–0.80</td>
<td>16</td>
<td>21±3</td>
<td>-</td>
</tr>
<tr>
<td>0.80–1.10</td>
<td>8</td>
<td>5±1</td>
<td>0.8</td>
</tr>
<tr>
<td>Signal region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1.10</td>
<td>0</td>
<td>1.0±0.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass region [TeV]</th>
<th>N_{obs}</th>
<th>Background expectation</th>
<th>Signal exp. $\Lambda_T = 2.8$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control regions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.12–0.20</td>
<td>6592</td>
<td>6598±530</td>
<td>-</td>
</tr>
<tr>
<td>0.20–0.40</td>
<td>1413</td>
<td>1301±120</td>
<td>-</td>
</tr>
<tr>
<td>0.40–0.60</td>
<td>88</td>
<td>103±11</td>
<td>-</td>
</tr>
<tr>
<td>0.60–0.80</td>
<td>21</td>
<td>18±3</td>
<td>-</td>
</tr>
<tr>
<td>0.80–1.10</td>
<td>7</td>
<td>6±1</td>
<td>0.6</td>
</tr>
<tr>
<td>Signal region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1.10</td>
<td>0</td>
<td>1.3±0.2</td>
<td>2.7</td>
</tr>
</tbody>
</table>
CMS Search in 4.7 fb$^{-1}$

<table>
<thead>
<tr>
<th>Source</th>
<th>Estimate</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Halo</td>
<td>11.1</td>
<td>5.6</td>
</tr>
<tr>
<td>Jet Fakes Photon</td>
<td>11.2</td>
<td>2.8</td>
</tr>
<tr>
<td>Electron Fakes Photon</td>
<td>4.1</td>
<td>2.4</td>
</tr>
<tr>
<td>$W\gamma$</td>
<td>2.8</td>
<td>0.9</td>
</tr>
<tr>
<td>$\gamma+\text{jet}$</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>$Z(\nu\bar{\nu})+\gamma$</td>
<td>42.4</td>
<td>6.3</td>
</tr>
<tr>
<td>Total Background</td>
<td>72.5</td>
<td>9.2</td>
</tr>
</tbody>
</table>

- $M_D \approx 1.59$-1.66 TeV for $3 \leq n_{ED} \leq 6$

CMS EXO-11-096
Jet+ MET: LED

- Relatively large production and clean final state with high p_T jet and large Missing-E_T
- $q\bar{q} \to gG, qg \to qG, gg \to Gg$

- Main background: $Z \to \nu\nu$ and $W+$jets

- Limits are set on M_D, the Planck scale M_s for extra dimensions n_{ED}

<table>
<thead>
<tr>
<th>Background process</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \to \nu\bar{\nu}$</td>
<td>900 ± 94</td>
</tr>
<tr>
<td>W+jets</td>
<td>312 ± 35</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>8 ± 8</td>
</tr>
<tr>
<td>$Z(\ell\ell)$+jets</td>
<td>2 ± 2</td>
</tr>
<tr>
<td>QCD multijet</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>Single t</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>Total background</td>
<td>1224 ± 101</td>
</tr>
<tr>
<td>Observed in data</td>
<td>1142</td>
</tr>
</tbody>
</table>

CMS Search in 4.7 fb$^{-1}$

CMS EXO-11-059
Selection: 1st generation
- $P_T(e) > 35 \text{ GeV}, P_T(\text{jets}) > 30 \text{ GeV}$ and
- Missing-$E_T > 45 \text{ GeV}$
- Main bkg: ttbar, W+jets
- Main systematic from W+Jet bkg shape

Selection: 2nd Generation
- $P_T(\mu) > 40 \text{ GeV}, P_T(\text{jets}) > 30 \text{ GeV}$
- $\Delta R(\mu-\mu) > 0.3$
- $S_T > 250 \text{ GeV}$ (at preselection level)

In addition for $\mu\nu qq$ channel:
- Veto on 2nd muon and 3rd Jet(and electron) with $P_T > 15, 25 \text{ GeV}$ respectively
- Missing-$E_T > 45 \text{ GeV}$
- $\Delta \phi(\text{MET-jet})$ and $\Delta \phi(\text{MET-}\mu) > 0.5$

PLB 706(2011) 246-266, CMS EXO-11-028
The analysis is designed to kinematically discriminate the pair production of heavy particle from SM background with making strong assumption about missing-

Force every event to *dijet-topology* by combining all jets in the event into two *mega jets* and defined Razor variable as

$$R \equiv \frac{M_T^R}{M_R}$$

Where,

$$M_R \equiv \sqrt{(E_{j1} + E_{j2})^2 - (p_T^{j1} + p_T^{j2})^2}$$

Peaks at leptoquark mass

$$M_T^R \equiv \sqrt{\not{E}_T(p_T^{j1} + p_T^{j2}) - \not{E}_T \cdot (\vec{p}_T^{j1} + \vec{p}_T^{j2})}$$
t' \rightarrow bW (di-lepton)

CMS Search in 4.7 fb$^{-1}$

- **Signal**: 2 leptons + Jets + Missing-E_T
- **Reconstruct** "b-jet + lepton" masses

Limit: $M_{t'} > 552$ GeV @95% CL
$t' \rightarrow bW$ (leptons+jets)

CMS Preliminary $\sqrt{s} = 7$ TeV e+jets

CMS Preliminary $\sqrt{s} = 7$ TeV μ+jets

Events / 20 GeV

M$_{fit}$ [GeV]

H$_T$ [GeV]
b’/t’ Inclusive Search: Classification

CMS Search in 1.1 fb⁻¹
b' Search

Full decay chain: $b' b' \rightarrow tWtW \rightarrow bWWbWW$: 2 b-jets + 4 Ws

Possible channels:

1L + 8Jet + MET
2L + 6jet + MET
3L + 4jet + MET
4L + 2jet + MET

Clean signatures: *tri-leptons and opposite signe di-lepton events*
Full decay chain: $b'b' \rightarrow 2 \text{ b-jets} + 4 \text{ Ws}$

- **Clean signal:** 3 leptons + 2 jets
 - OR 2 same sign leptons + 4 jets
- at least 1 b-jet, E_T^{miss}
- $P_T(e, \mu) > 20 \text{ GeV}$ and $P_T(\text{each jet}) > 25 \text{ GeV}$, $S_T > 500 \text{ GeV}$
- Very less or almost no backgrounds

$M_{b'} > 600 \text{ GeV} @ 95\% \text{ CL}$
T→tZ: Decay Modes

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>BF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1L+4-8J (1Wlv)</td>
<td>324/900</td>
</tr>
<tr>
<td>2L+2-6J (2Wlv)</td>
<td>81/900</td>
</tr>
<tr>
<td>2L+6-8J (1Zll)</td>
<td>72/900</td>
</tr>
<tr>
<td>3L+4-6J (1Wlv+ 1Zll)</td>
<td>72/900</td>
</tr>
<tr>
<td>4L+2-4J (2Wlv+ 1Zll)</td>
<td>18/900</td>
</tr>
<tr>
<td>4L+6J (2Zll)</td>
<td>4/900</td>
</tr>
<tr>
<td>5L+4J (1Wlv+ 2Zll)</td>
<td>4/900</td>
</tr>
<tr>
<td>6L+2J (2Wlv+ 2Zll)</td>
<td>1/900</td>
</tr>
</tbody>
</table>

2W bosons + 2 Z bosons + 2 jets

- **BF 5.4 % for e, µ**
- Clean signature, includes 3 leptons (two coming from Z) and at least 2 jets