Heavy Quark Production in the ACOT Scheme at NNLO and N3LO

Fred Olness

SMU

Conspirators:

K. Kovarik, I Schienbein, J. Yu, J. Morfin, P. Nadolsky, T.P. Stavreva, A. Kusina, M. Guzzi, J. Gao, Z. Liang J. Owens, C. Keppel, D. Soper ... DIS 2012, Bonn 28 March 2012

Motivation

2

Recent Measurements: Requires Theoretical Improvements

Fred Olness

ACOT

$(a) NNLO + N^3LO$

Stavreva, Olness, Schienbein, Jezo, Kusina, Kovarik, Yu arXiv:1203.0282

ACOT Extension to Higher Orders

Full ACOT

Based on the Collins-Wilczek-Zee (CWZ) Renormalization Scheme ... hence, extensible to all orders

DGLAP kernels & PDF evolution are pure MS-Bar Subtractions are MS-Bar

ACOT: $m \rightarrow 0$ limit yields MS-Bar with no finite renormalization

ACOT m→ 0 limit cross check with QCDNUM at NLO

PATCH FOR TESTING: HMASS=0= 0.938000023			_	_
IHADRON: SET TO HAD	RON= 1		F ₂	$\mathbf{F}_{\mathbf{T}}$
GZ and ZZ are for testing				
<pre>print x,q, ratios:</pre>	0.00319999992	12.2474487	1.00092636	1.0012981
<pre>print x,q, ratios:</pre>	0.00499999989	12.2474487	1.00098575	1.00126809
print x,q, ratios:	0.0080000038	12.2474487	1.00106943	1.00153596
print x,q, ratios:	0.00319999992	14.1421356	1.00092542	1.00125357
print x,q, ratios:	0.00499999989	14.1421356	1.00097202	1.00121532
<pre>print x,q, ratios:</pre>	0.0080000038	14.1421356	1.00104411	1.00146055
<pre>print x,q, ratios:</pre>	0.013000003	14.1421356	1.00107382	1.0013549
<pre>print x,q, ratios:</pre>	0.0199999996	14.1421356	1.00114663	1.0014694
<pre>print x,q, ratios:</pre>	0.0320000015	14.1421356	1.00119237	1.00152525
<pre>print x,q, ratios:</pre>	0.050000007	14.1421356	1.00117963	1.00131561
<pre>print x,q, ratios:</pre>	0.0799999982	14.1421356	1.00098036	1.00123239
<pre>print x,q, ratios:</pre>	0.00499999989	15.8113883	1.00095999	1.00117694
<pre>print x,q, ratios:</pre>	0.0080000038	15.8113883	1.0010229	1.00140587
	0.013000003	15.8113883	1.00104124	1.00130353
NLO Check with	0.0199999996	15.8113883	1.00110599	1.00140934
OCDNUM	0.0320000015	15.8113883	1.00114419	1.00146259
	0.050000007	15.8113883	1.00113621	1.00125726
	0.0799999982	15.8113883	1.00095108	1.0011996
~1E-3	0.129999995	15.8113883	1.00055001	1.00103563
print x,q, ratios:	0.25	15.8113883	0.99929117	1.0000816
<pre>print x,q, ratios:</pre>	0.40000006	15.8113883	0.997267345	0.998376607
<pre>print x,q, ratios:</pre>	0.00499999989	17.3205081	1.00094852	1.00114569
<pre>print x,q, ratios:</pre>	0.0080000038	17.3205081	1.00100525	1.00136309
<pre>print x,q, ratios:</pre>	0.013000003	17.3205081	1.00101481	1.00118502
<pre>print x,q, ratios:</pre>	0.0199999996	17.3205081	1.00107357	1.00136459
<pre>print x,q, ratios: Fred Olness</pre>	0.0320000015 19 March 2012 LH	17.3205081 C Benchmarks	1.00110601	1.00140262 Page 8

ACOT

Phase Space & Dynamic Mass

ACOT Extension to Higher Orders

Full ACOT

Extensible to any order

$$= f(\xi(x, m_{ps}), Q) \otimes \hat{\sigma}(m_{dyn})$$
$$\xi(x, m_{ps}) = x \left(1 + \left[\frac{n m_{ps}}{Q} \right]^2 \right)$$
$$n = \{0, 1, 2\}$$

Fred Olness

 σ

19 March 2012 LHC Benchmarks

Distinguish: "phase space" mass "dynamic" mass

Demonstrate: 1) PS mass dominates 2) Estimated Error small Page 10

Identify Two Types of Mass Depencence: "dynamic" & "phase space" 1

Fred Olness

EFFECT OF MASS SCALING *(a)* **N3LO** (Phase Space Mass)

EFFECT OF MASS SCALING @ N3LO (Phase Space Mass)

Master formula for decomposing the flavor components

$$F = \sum_{i,j}^{6} F^{ij}$$

The Goal: Convert from {s, ns, ps} to {q,g, ...}

T.P. Stavreva, I Schienbein
$$i / j$$

$$x^{-1}F_a^{ij} = q_i^+ \otimes \left\{ e_i^2 \left[C_{a,q}^{ns}(n_f = 0) \ \delta_{ij} \right] \right\}$$

$$+C_{a,q}^{\mathrm{ns}}(j) - C_{a,q}^{\mathrm{ns}}(j-1) \bigg]$$

$$-\langle e^2 \rangle^{(j)} C^{\mathrm{ps}}_{a,q}(j) - \langle e^2 \rangle^{(j-1)} C^{\mathrm{ps}}_{a,q}(j-1) \bigg\}$$

Issues: Flavor separation: *New diagrams at this order*

- c,b, goes down beam pipe
- both c & b in final state

FLAVOR DECOMPOSITION

FLAVOR DECOMPOSITION: Final State Quark:

FLAVOR DECOMPOSITION: Initial State Quark:

RESULTS

F_{2,L} @ N3LO

19

F_{2,L} **@ N3LO**

A Complementary Approach S-ACCDTY at NNLU

led by Marco Guzzi and Pavel Nadolsky

Drastic μ_F -scale reduction in $F_2^c(x, Q^2)$ at NNLO

LH PDFs Q=2 GeV, m_c =1.41 GeV

By using S-ACOT- χ we obtain a drastic reduction of the theoretical errors compared to the NLO computation.

Marco Guzzi (SMU)

DOE-2011

Comparison

23

Les Houches Comparative Studies

Excellent progress in addressing how to compute heavy quarks *The Cast:*

ACOT & S-ACOT Codes Used in CTEQ4HQ, 5HQ, 6HQ

Aivazis, Collins, Olness, Tung, Phys.Rev.D50:3102-3118,1994.

S-ACOT CTEQ 6.5 & 6.6

Tung, Lai, Belyaev, Pumplin, Stump, Yuan, JHEP 0702:053,2007. Nadolsky, Tung, Phys.Rev.D79:113014,2009.

Thorne-Roberts (TR') MSTW Fits

Thorne, Phys.Rev.D73:054019,2006.

ABKM:

Blumlein, Klein, Moch Phys.Rev.D81:014032,2010

Les Houches Report. J. Rojo, et al., arXiv:1003.1241 [hep-ph] FONLL: Used in NNPDF Fits

Forte, Laenen, Nason, Rojo, Nucl.Phys.B834:116-162,2010.

Work is continuing

Many of the above incorporated in HERA-Fitter

24

Les Houches Comparative Study

The SM and NLO Multileg Working Group: Summary report.J. Rojo, et al.,e-Print: arXiv:1003.1241 [hep-ph]

Fred Olness

19 March 2012 LHC Benchmarks

Differences understood Should reduce at higher order

where all black curves stand for free proton PDF and red, green, blue, cyan, pink, yellow, magenta and brown curves show PDF in protons bound in nuclei - from deuterium (red) to lead (brown).

¥

Nuclear Corrections: Compare Neutrino and Charged Lepton DIS 27

Conclusion

This technique provides an NNLO & N3LO extension of ACOT

"Phase space" mass is included via rescaling Dominant effect for LO & NLO

- F2: Stable. LO and NLO have full m-dependence N2LO and N3LO very similar
- FL: More complex as NLO corrections are large (Callan-Gross) N2LO and N3LO terms converge

Heavy quark terms vanish for low Q; this moderates mass effects

Thanks to: K. Kovarik, A. Kusina, T.P. Stavreva I Schienbein, J.-Y. Yu,

P. Nadolsky, M. Guzzi, J. Owens, J. Morfin, C. Keppel, D. Soper ...

& the HERA-PDF Working Group

Fred Olness

W, Z data sensitivity to strange sea

500

 $W \rightarrow I \overline{\nu}_{\mu}$

- ATLAS performed NNLO QCD fit to Z, W^+, W^- + HERA ep DIS cross sections: significant tension for Z observed when suppressing strange by 50% at low scale $1.9 \,\mathrm{GeV}^2$
- Fit with free strange sea gives no supression

 $r_s = 1.00 \pm 0.20_{\text{exp}} \stackrel{+0.16}{_{-0.20 \text{ sys}}}$

ATLAS

Preliminarv

140

120

nCTEQ Nuclear PDF's

W Production at LHC: A Benchmark Cross Section

- Larger Energy \Rightarrow probes PDFs to small momentum fraction x
- Larger Rapidity $(y) \Rightarrow$ probes PDFs to *really* small x
- Larger fraction of heavy quarks

Heavy Quark components play an increasingly important role at the LHC

How well do we know the Strange PDF???

PDF Uncertainties \Rightarrow **S(x) PDF** \Leftrightarrow **W/Z at LHC**

