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We present a consistent treatment of heavy quarks for jet production in DIS at NLO
accuracy. The method is based on the ACOT massive factorization scheme and dipole
subtraction method for jets. The last had to be however extended in order to take into
account initial state splittings with heavy quarks. We constructed relevant kinematics
and dipole splitting functions together with their integrals. We partially implemented
the method in a MC program and checked against the known inclusive result for charm
structure function.

1 Introduction
There are two basic approaches to heavy quarks production in DIS. First is so called zero-mass
variable flavor number scheme (ZM-VFNS), which treats heavy quarks as massless partons with
corresponding parton distribution functions (PDF). This scheme is applicable when the hard
scale (taken here as the virtuality of the exchanged boson Q2) is much larger then the mass
mQ of a given heavy quark Q. On the other hand, when Q2 is of the order of mQ, so called
fixed flavor number scheme (FFNS) is applicable. It retains the full mass dependence in the
coefficient function and there is no PDF for Q as to the leading power it cannot appear in the
soft part.

Increasing precision of the data forces us to control also the intermediate region of Q2. The
methods that address this problem are called general mass schemes (GM) [1, 2, 3, 4]. They are
however formulated for inclusive processes only and similar method relevant for jets is highly
desirable.

In the following we briefly describe our solution to this problem [5, 6]. It is based on the
ACOT massive factorization theorem [1, 7] and massive dipole subtraction method (DSM)
[8, 9, 10], which however had to be reformulated in order to match with the former.

2 Dipole subtraction method with massive partons
Consider NLO calculation of a cross section for producing n jets in lepton-hadron reaction. The
LO cross section is schematically written as

σ(LO)
n = N

∑
a

fa ⊗
∫
dΦn,a |Mn,a|2 Fn,a, (1)
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where N is a normalization factor, fa are PDFs, dΦn,a is n-parton phase space (PS) andMn,a

is a tree-level matrix element (ME) with n final state partons and one QCD initial state parton
a. The jet function Fn,a determines the actual observable and is realized by a suitable jet
algorithm. It satisfies Fn+1,a = Fn,a in the singular regions of PS. At NLO the corrections
involve loop diagrams living on n-particle PS and additional real emission belonging to (n+ 1)-
particle PS. Both contain IR singularities which ultimately cancel, however the cancellation is
non-trivial as the singularities have different origin. An elegant and exact solution is provided
by DSM. One adds and subtracts an auxiliary contribution Dn,a, such that it mimics all the
singularities ofMn+1,a and at the same time can be analytically integrated over singular regions
of PS. To be more specific we have

σ(NLO)
n = N

∑
a

fa ⊗

{∫
dΦn+1,a

[
|Mn+1,a|2 Fn+1,a −Dn,aFn,a

]
+

∫
dΦn,a

[
M(loop)

n,a +

∫
dφaDn,a − Cn,a

]
Fn,a

}
, (2)

where virtual corrections to |Mn,a|2 are symbolically denoted asM(loop)
n,a . The subspace leading

to singularities is dφa and fulfils PS factorization formula dΦn+1,a = dΦn,a ⊗ dφa. Thanks to
the properties of Dn,a and Fn+1,a the first square bracket is integrable in four dimensions,
while in the second, the poles resulting from integral

∫
dφaDn,a are cancelled against the ones

in M(loop)
n,a . However, not all singularities cancel in this way – there are also collinear poles

connected with initial state splittings of massless partons. They are removed by means of
collinear subtraction term Cn,a. It has the form

Cn,a =
∑
b

Fab ⊗ |Mn,b|2 , (3)

where Fab are renormalized partonic PDFs, i.e. the densities of partons b inside parton a.
For instance in the MS scheme Fab (z) = − 1

ε
αs

2π Pab (z), where Pab (z) are standard splitting
functions.

Within DSM the dipole function is realized as a sum of contributions corresponding to single
emissions with different combinations of “emitter” and “spectator”partons1. Each such term D
has a general form

D = V̂ Ĉ
∣∣∣M̂n,a

∣∣∣2 , (4)

where V̂ is so called dipole splitting matrix (in helicity space) and encodes the information
about some of the singularities of Mn+1,a. The matrix Ĉ corresponds to color operators for
parton emissions, which act on the matrix element. The notation above is symbolic and means
that both quantities are correlated in the color and spin space. For DIS, there are three different
classes of dipoles D, depending on whether emitter or spectator are in the initial or final states.
Here we are mainly interested in the case of initial state emitter and final state spectator as
they contain factorization-related information.

When heavy quarks are present, the above general picture remains the same. If however a
massive parton takes part in a splitting process there is no collinear singularity. Nevertheless

1The notion “emitter” and “spectator” are explained in [11]
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there are IR sensitive logarithms which become harmful when the external scale becomes large.
We shall refer to such terms as quasi-collinear singularities [12] and abbreviate as q-singularities.
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Figure 1: ACOT charm structure function cal-
culated using MC implementation of our method
(MassJet). The calculations are done for xB = 0.05
and CTEQ5 PDFs.

The first step towards GM scheme for
jets is to construct dipole functions control-
ling q-singularities for initial state emissions.
Moreover we want to have possibly massive
initial states as it is allowed by the ACOT
scheme. It was partially done in [8] (for
Q→ Qg splitting), while in [10] the splitting
processes with heavy quarks are considered in
the final states only.

Let us look at the particular example.
Consider the initial state g → QQ splitting.
Let us assign the momentum pa to the gluon,
pi to the emitted final state quark (or anti-
quark), and pj to the spectator. Using these,
we construct new momenta which enterMn,a

in (4): p̃µj = w̃
(
pµi + pµj

)
− ũpµa becomes a

new final state and p̃µai = (w̃ − 1)
(
pµi + pµj

)
−

(ũ− 1) pµa becomes a new initial state. The variables ũ, w̃ can be determined from on-shell
conditions for p̃j and p̃ai. Our dipole splitting function reads

V̂g→QQ, j = 8πµ2ε
r αsTR

[
1− 1

1− ε

(
2ũ (1− ũ)−

(1− ũ)m2
Q

pi · pa

)]
, (5)

where µr is a mass scale needed in D = 4 − 2ε dimensions. In this case V̂ is just diagonal in
helicity space.

Consider next the integral of (5) over one-particle subspace. It can be convenietly expressed
in terms of rescaled masses η2l = m2

l /2p̃j · pa for some parton l. In the limit of small ηQ we get

∫
dφ V̂g→QQ, j (u) =

αs
2π

[
Pgq (u)

(
log

u2

u+ η2j
− log η2Q

)
+ 2TR u (1− u)

]
+O

(
η2Q
)
. (6)

We see that there is a term of the form Pgq (u) log η2Q which becomes harmful when the scale
becomes large (in massless case there would be a pole 1/ε). Similar terms appear also in other
dipoles for the initial state emissions.

3 General mass scheme for jets

In the spirit of the ACOT scheme, the initial state q-singularities have to be factorized out.
It is accomplished by Cn,a term with partonic PDFs Fab calculated in a special way. Let us
recall at this point, that the latter are defined as certain ME of light-cone operators and can
be calculated order by order using special Feynman rules (see e.g. [13]). The results contain
UV singularities which have to be renormalized, leading to evolution equations. For the present
application we calculate Fab to one loop with full mass dependence and renormalize them using
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the MS scheme2. Since counterterms are mass independent in this scheme, we assure that
hadronic PDFs evolve according to standard massless DGLAP equations. For instance we get

FgQ (z) =
αs
2π

TR (1− 2z (1− z)) log
µ2
r

m2
Q

, (7)

FQg (z) =
αs
2π

CF
1 + (1− z)2

z

[
log

µ2
r

m2
Q

− 2 log z − 1

]
, (8)

FQQ (z) =
αs
2π

CF

{
1 + z2

1− z

[
log

µ2
r

m2
Q

− 2 log (1− z)− 1

]}
+

. (9)

We have checked that the above procedure leads to IR safe dipoles in the limit of vanishing
ηQ. Moreover, the results coincide with those Ref. [10] in the MS scheme.

In order to perform numerical tests we have partially implemented our method in a dedicated
C++ program based on FOAM [14]. Using the program, we have calculated the charm structure
function F2 and compared it with semi-analytical calculation in the ACOT scheme. This
exercise uses three dipoles and two collinear subtraction terms. The virtual corrections are
taken from [15]. We find that the soft poles are indeed cancelled by the corresponding poles
coming from the integrated dipoles. Moreover, we find agreement with the semi-analytical
calculation and observe that our result properly interpolates between the two limiting solutions
of the ZM-VFNS and FFNS schemes, as depicted in Fig. 1.

Let us stress that the result is obtained by a numerical integration of a fully differential cross
section, which provides a severe test on the implementation of our massive dipole formalism.
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