Measurements of Quarkonium production at CMS

Daniele Fasanella
University & INFN of Bologna

on Behalf of the CMS Collaboration
Motivations

- Heavy quarkonia are an excellent laboratory for understanding QCD
 - non-relativistic due to their high mass
 - nonperturbative effects can be simplified and constrained

- In the last decade, significant progress for production mechanisms
 - new experimental results
 - improved theoretical descriptions

- Definitive understanding still a challenge, several models competing for confirmation

- Renewed interest in quarkonium spectroscopy since the discovery of the XYZ exotic states:
 - search of new possible states
 - new measurements needed to understand their true nature
CMS Quarkonium Studies

Y production cross section
L\(_{\text{int}}\) = 3 pb\(^{-1}\)
Phys. Rev. D 83, 112004 (2011)

Prompt and non-prompt J/ψ production
L\(_{\text{int}}\) = 314 nb\(^{-1}\)

J/ψ and ψ(2S) production
L\(_{\text{int}}\) = 37 pb\(^{-1}\)
JHEP 02, 011 (2012)

Observation of the χ\(_{c}\) states
L\(_{\text{int}}\) = 1.1 fb\(^{-1}\)
CERN-CMS-DP-2011-011

Measurement of the production cross section ratio of X(3872) and ψ(2S)
L\(_{\text{int}}\) = 40 pb\(^{-1}\)
CMS-PAS-BPH-10-018

Daniele Fasanella - DIS 2012: 28 March 2012, University of Bonn
Muons in CMS

- Quarkonium states identified in final states with di-muons

- Muon system information matched to an inner-tracker track for improved momentum resolution

- Inner Tracker:
 - Silicon pixel and strip layers
 - High p_T resolution $\sim 1\%$
 - Excellent vertex reconstruction and impact parameter resolution

- Muon System
 - 3 types of gaseous detectors
 - Phase space coverage up to $|\eta| = 2.4$
 - Highly efficient muon trigger and identification
 - Resolution η dependent.
Muon Triggers

2010 Run

Low instantaneous luminosity in 2010:
- Di-muon trigger without additional p_T requirements
- Special triggers to collect very low p_T muons in the first months

2011 Run Strategy

Higher instantaneous luminosity in 2011:
- Specific trigger paths developed for the different analyses
- High purity signal already at trigger level

Daniele Fasanella - DIS 2012: 28 March 2012, University of Bonn
S-wave quarkonium states

- Unbinned Maximum Likelihood fit to $\mu^+\mu^-$ invariant mass distributions
- Signals modeled with Crystal Ball functions
- Mass differences are fixed from PDG, common resolution value (scaled by mass)
- Yields then corrected for Acceptance (from MC) and Efficiency (from data-driven methods)
 - muon acceptance is strongly dependent on production polarization

Data

CMS - $\sqrt{s} = 7$ TeV

- $L = 37 \text{ pb}^{-1}$
- $|\eta^\mu| < 1.0$
- $8 < p_T < 9$ GeV/c
- $|y| < 1.2$

$\chi^2/\text{n.dof} = 94.4/99$

Graphs

- **Barrel Region**
 - $\Upsilon(1S)$
 - $\Upsilon(2S)$
 - $\Upsilon(3S)$

- **Total**
 - $\Upsilon(1S)$
 - $\Upsilon(2S)$
 - $\Upsilon(3S)$

Daniele Fasanella - DIS 2012: 28 March 2012, University of Bonn
Inclusive J/ψ Production

\[\frac{d^2\sigma}{dp_T dy} (J/\psi) \cdot B(J/\psi \rightarrow \mu^+\mu^-) = \frac{N^\text{corr}_{J/\psi}(p_T, |y|)}{\int L \, dt \cdot \Delta p_T \cdot \Delta y} \]

- Inclusive cross section comprises 3 production methods in hadron collisions:
 - **Prompt:**
 - Directly from pp collisions
 - “Feed-down” from heavier states as χ_c and $\psi(2S)$
 - **Non Prompt**
 - from b-hadron decays
- Very low p_T range covered using first 314 nb$^{-1}$ of data
- Statistical errors from 2 to 9%
- Systematical uncertainties of few% (except polarization)

Unpolarized scenario results

Daniele Fasanella - DIS 2012: 28 March 2012, University of Bonn
Non prompt Fraction

- Fraction coming from b-decay extracted with a 2-Dimensional fit of invariant mass and "pseudo-proper" decay length

\[l_{J/\psi} = \frac{L_{xy} \cdot m_{J/\psi}}{p_T} \]

- \(l_{J/\psi} \) distribution components:
 - prompt \(\rightarrow \) Resolution function
 - non prompt \(\rightarrow \) Resolution function convoluted with exponential
 - background \(\rightarrow \) Pre-fitted in mass sidebands

- Decay length resolution described by "per-event uncertainty" on \(l_{J/\psi} \)
- Results in agreement with CDF and ATLAS

Daniele Fasanella - DIS 2012: 28 March 2012, University of Bonn
- Excellent agreement with NRQCD predictions
 - For prompt J/ψ, feed down effect included in theory
 - remarkable for $\psi(2S)$ in absence of feed-down
- Typical uncertainties $\sim 5\%$ on J/ψ [$\psi(2S)$] cross-sections
- Polarization uncertainty studied in 4 “extreme” scenarios, effects up to $20[30]\%$ for J/ψ [$\psi(2S)$]

Daniele Fasanella - DIS 2012: 28 March 2012, University of Bonn
B → ψ(nS)X cross sections

- Comparison with FONLL predictions:
 - For J/ψ:
 - agreement below 30 GeV
 - above 30 GeV FONLL overestimate data
 - For ψ(2S):
 - Shape agreement in the measurement range
 - Uniform scale discrepancy found
 - improved determination of BR
\(\psi(2S) \) to \(J/\psi \) cross-sections ratios

- **Cross Section Ratio calculation:**
 - Systematic uncertainties largely cancel (Luminosity, Single Muon Efficiencies...)
 - Direct production with same polarization
 - Residual polarization effect from \(J/\psi \) coming from feed-down
 - No \(|y|\) dependence seen, results as function of \(p_T \)

- **\(B \rightarrow \psi(2S) X \) Branching Fraction**
 - measured fitting the non-prompt cross-section ratio with FONLL or EvtGen curves
 \[
 B(B \rightarrow \psi(2S)X) = (3.08 \pm 0.12(\text{stat.}+\text{syst.}) \pm 0.13(\text{theor.}) \pm 0.42(B_{PDG})) \cdot 10^{-3}
 \]
 - In agreement with world average \((4.8\pm2.4)\cdot10^{-3}\)
 - improving relative uncertainty by factor 3
 - main uncertainties from other PDG BRs
\(\Upsilon(nS) \) Cross Sections

\[
\sigma(pp \to \Upsilon(1S)X) \cdot B(\Upsilon(1S) \to \mu^+\mu^-) = 7.37 \pm 0.13^{\text{(stat.)}}_{\pm 0.42}^{+0.61}_{-0.42} (\text{syst.}) \pm 0.81 (\text{lumi.}) \text{ nb}
\]
\[
\sigma(pp \to \Upsilon(2S)X) \cdot B(\Upsilon(2S) \to \mu^+\mu^-) = 1.90 \pm 0.09^{\text{(stat.)}}_{\pm 0.14}^{+0.20}_{-0.14} (\text{syst.}) \pm 0.24 (\text{lumi.}) \text{ nb}
\]
\[
\sigma(pp \to \Upsilon(3S)X) \cdot B(\Upsilon(3S) \to \mu^+\mu^-) = 1.02 \pm 0.07^{\text{(stat.)}}_{\pm 0.08}^{+0.11}_{-0.08} (\text{syst.}) \pm 0.11 (\text{lumi.}) \text{ nb}
\]

- \(\Upsilon(1S) \) and \(\Upsilon(2S) \) include feed-down from higher-mass states
- Unpolarized \(\Upsilon(nS) \) assumption
 - Extreme polarization change cross sections by about 20%

Daniele Fasanella - DIS 2012: 28 March 2012, University of Bonn
\(\Upsilon(1S) \) Cross Section

Consistent shape to PYTHIA
- PYTHIA overestimates the integrated cross section by a factor 2

Results compared to D0 and CDF measurements
- Assuming cross section uniform in rapidity an increase by a factor 3 is observed at \(\sqrt{s} = 7 \) TeV

Differential cross-section vs rapidity:
- slight decrease towards \(|y| = 2\) consistent with PYTHIA
\(\chi_{cJ} \rightarrow J/\psi \gamma \) mass distribution

- Excellent resolution (< 10 MeV) for photons converted in the tracker volume
- \(\chi_{c1} \) and \(\chi_{c2} \) (\(\Delta m \sim 45 \) MeV) peaks resolved in the \(J/\psi \gamma \) spectrum
- Signal modeled by 3 Crystal Ball functions with common parameters
- Studies on \(\chi_{cJ} \) states
 - discriminate between different theoretical production models
 - evaluate the feed-down corrections to prompt \(J/\psi \) production

Daniele Fasanella - DIS 2012: 28 March 2012, University of Bonn
The X(3872) state

- Discovered in 2003 by Belle → its nature still unclear
- A clear signal is established in 2010 in the $J/\psi \, \pi^+ \, \pi^-$ decay channel

Starting from reconstructed J/ψ
- Searched pair of compatible good quality opposite-charged tracks in $\Delta R(\pi, J/\psi) < 0.7$
- Performed 4-track vertex fit with J/ψ mass fixed to the PDG value
- Kept good quality candidates in the kinematic region
 $p_T(X) > 8$ GeV and $|y(X)| < 2.2$

Unbinned maximum likelihood fit
- $m_{\psi(2S)} = 3685.9 \pm 0.1$ (stat. only) MeV
- $m_{X(3872)} = 3870.2 \pm 1.9$ (stat. only) MeV
- $\sigma_{1\psi(2S)} = 8.1 \pm 0.6$ MeV
- $\sigma_{2\psi(2S)} = 3.3 \pm 0.3$ MeV
- $\sigma_{X(3872)} = 6.3 \pm 1.3$ MeV

PDG values
- $m_{\psi(2S)} = 3686.09 \pm 0.04$ MeV
- $m_{X(3872)} = 3871.57 \pm 0.25$ MeV

CMS Preliminary

$\sqrt{s} = 7$ TeV

$\int L \, dt = 40$ pb$^{-1}$
X(3872) to $\psi(2S)$ inclusive cross section ratio

$$R = \frac{\sigma(pp \rightarrow X(3872) + \text{anything}) \cdot \text{BR}(X(3872) \rightarrow J/\psi \pi^+\pi^-)}{\sigma(pp \rightarrow \psi' + \text{anything}) \cdot \text{BR}(\psi' \rightarrow J/\psi \pi^+\pi^-)}$$

- Acceptance and efficiency correction from simulation are applied on the yields extracted from the mass spectrum
 - Pythia 6 with mass of χ_{c1} ($J^{PC}=1^{++}$) set to 3.872 GeV
 - Null polarization assumed
 - 30% non-prompt fraction assumed
- Ratio results

$$R = 0.087 \pm 0.017 \text{ (stat.)} \pm 0.009 \text{ (syst.)}$$

- In 2011 larger statistic collected with a J/ψ trigger restricted to the CMS barrel
- With first 896 pb$^{-1}$
 - $N_{\psi(2S)} = 72594 \pm 518 \text{ (stat)}$
 - $N_{X(3872)} = 5303 \pm 341 \text{ (stat)}$
Conclusions

CMS has issued several studies on heavy quarkonia with the first LHC data:

- Measurement of J/ψ cross section from 0 to 70 GeV/c with large rapidity coverage ($|y|<2.4$)

- Differential cross-sections in p_T and $|y|$ of J/ψ and $\psi(2S)$ mesons
 - prompt and non-prompt contributions separated
 - compatible results to NRQCD prediction up to 30 GeV/c for prompt production
 - uniform scale discrepancy found and explained for non-prompt $\psi(2S)$ production w.r.t. FONLL
 - consistent results with other LHC experiments
 - improved relative uncertainty for BR(B->$\psi(2S)\ X$) of a factor 3

- Differential cross-sections in p_T for $\Upsilon(nS)$ states
 - shape compatible to PYTHIA and results at Tevatron

- First measurement for the $X(3872)$ to $\psi(2S)$ cross section ratio

- χ_{cJ} peaks resolved in their radiative decay to J/ψ, using converted photons
BACKUP
The CMS detector

Solenoid
- 3.8 T B-field

Tracker

Muon Barrel
- Silicon Strips
- Pixels
- Drift Tubes (DT)
- Resistive Plate Chambers (RPC)

Calorimeters
- ECAL
 - Scintillating PbWO$_4$
 - Crystals
- HCAL
 - Plastic scintillator/brass sandwich

Muon Endcaps
- Resistive Plate Chambers (RPC)
- Cathode Strip Chambers (CSC)
Acceptances

Single Muon Acceptance

\[p_T^\mu \text{(GeV/c)} \]

\[\eta^\mu \]

\[p_T^\psi \text{(GeV/c)} \]

\[|y| \]

\[\psi \text{ Acceptance} \]

\[\Upsilon(nS) \text{ Acceptance} \]

\[A^\Upsilon \]

\[p_T^\Upsilon \text{(GeV/c)} \]

Polarized \[\Upsilon(nS) \text{ Acceptance} \]

\[A^\Upsilon(|y|<2) \]

\[p_T^\psi \text{(GeV/c)} \]

\[|y|^{|y|<2} \]

\[\begin{align*}
\text{Unpol} & \\
\text{HX T} & \\
\text{HX L} & \\
\text{CS T} & \\
\text{CS L} &
\end{align*} \]
First CMS paper on J/ψ

\[\sigma(pp \rightarrow J/\psi + X) \cdot \text{BR}(J/\psi \rightarrow \mu^+\mu^-) = 70.9 \pm 2.1 \text{(stat)} \pm 3.0 \text{(syst)} \pm 7.8 \text{(luminosity)} \text{ nb} \]

\[\sigma(pp \rightarrow bX \rightarrow J/\psi X) \cdot \text{BR}(J/\psi \rightarrow \mu^+\mu^-) = 26.0 \pm 1.4 \text{ (stat)} \pm 1.6 \text{ (syst)} \pm 2.9 \text{ (luminosity)} \text{ nb} \]
$$\psi(nS) \text{ Cross-section overview}$$

$$\frac{d^2\sigma}{dp_T dy}(J/\psi) \cdot B(J/\psi \to \mu^+ \mu^-) = \frac{N_{J/\psi}^{corr}(p_T, |y|)}{\int L dt \cdot \Delta p_T \cdot \Delta y}$$

- $N_{\text{fit}} = \text{signal yield from fit to } \mu\mu \text{ invariant mass}$
- $\int L dt = \text{integrated luminosity (4% uncertainty)}$
- $A = \text{geometrical and kinematical acceptance}$
 - Strongly dependent on production polarization
- $\epsilon = \text{dimuon efficiency} = \epsilon(\mu^+) \epsilon(\mu^-) \rho \epsilon_{\text{vertex}}$
 - single muon trigger and reconstruction $\epsilon(\mu)$, data-driven via Tag & Probe
 - vertexing of opposite sign dimuons (Prob>1%)
 - selection based on high quality tracks associated to muon segments:
 - cuts on $n_{\text{hits}}, \chi^2, |d_{xy}|, |d_z|$
 - ρ express the correlation between the two μ efficiencies
 - trigger settings remove too close μ (to reduce single μ faking double μ), inducing sizable correlations \Rightarrow Offline rejection of forward muons bending towards each other
$\psi(nS)$ Cross Sections

uncorrected for acceptance

![Graph of J/ψ cross sections](image)

![Graph of $\psi(2S)$ cross sections](image)

Prompt J/ψ

- $\mu^+\mu^-$, uncorrected for acceptance
- p_T range: 6 to 50 GeV/c

Non-Prompt J/ψ

- $\mu^+\mu^-$, uncorrected for acceptance
- p_T range: 6 to 50 GeV/c

Prompt $\psi(2S)$

- $\mu^+\mu^-$, uncorrected for acceptance
- p_T range: 6 to 30 GeV/c

Non-Prompt $\psi(2S)$

- $\mu^+\mu^-$, uncorrected for acceptance
- p_T range: 6 to 30 GeV/c
\(\psi(nS)\) Integrated Cross Sections

J/\psi

- \(8.0 < p_T < 70.0 \ \text{GeV/c}\) for \(|y| < 0.9\)
- \(8.0 < p_T < 45.0 \ \text{GeV/c}\) for \(0.9 < |y| < 1.2\)
- \(6.5 < p_T < 45.0 \ \text{GeV/c}\) for \(1.2 < |y| < 1.6\)
- \(6.5 < p_T < 30.0 \ \text{GeV/c}\) for \(1.6 < |y| < 2.1\)
- \(5.5 < p_T < 30.0 \ \text{GeV/c}\) for \(2.1 < |y| < 2.4\)

\(\psi(2S)\)

- \(6.5 < p_T < 30.0 \ \text{GeV/c}\) for \(|y| < 1.2\)
- \(5.5 < p_T < 30.0 \ \text{GeV/c}\) for \(1.2 < |y| < 2.4\)

Corrected for acceptance:

\[B(J/\psi \rightarrow \mu^+\mu^-) \cdot \sigma(pp \rightarrow \text{prompt } J/\psi) = 54.5 \pm 0.3 \pm 2.3 \pm 2.2 \ \text{nb}\]

\[B(J/\psi \rightarrow \mu^+\mu^-) \cdot \sigma(pp \rightarrow bX \rightarrow J/\psi X) = 20.2 \pm 0.2 \pm 0.8 \pm 0.8 \ \text{nb}\]

\[B(\psi(2S) \rightarrow \mu^+\mu^-) \cdot \sigma(pp \rightarrow \text{prompt } \psi(2S)) = 3.53 \pm 0.26 \pm 0.32 \pm 0.14 \ \text{nb}\]

\[B(\psi(2S) \rightarrow \mu^+\mu^-) \cdot \sigma(pp \rightarrow bX \rightarrow \psi(2S)X) = 1.47 \pm 0.12 \pm 0.13 \pm 0.06 \ \text{nb}\]

Uncorrected for acceptance:

\[B(J/\psi \rightarrow \mu^+\mu^-) \cdot \sigma(pp \rightarrow \text{prompt } J/\psi) = 9.83 \pm 0.03 \pm 0.38 \pm 0.39 \ \text{nb}\]

\[B(J/\psi \rightarrow \mu^+\mu^-) \cdot \sigma(pp \rightarrow bX \rightarrow J/\psi X) = 4.67 \pm 0.02 \pm 0.17 \pm 0.19 \ \text{nb}\]

\[B(\psi(2S) \rightarrow \mu^+\mu^-) \cdot \sigma(pp \rightarrow \text{prompt } \psi(2S)) = 0.410 \pm 0.009 \pm 0.023 \pm 0.016 \ \text{nb}\]

\[B(\psi(2S) \rightarrow \mu^+\mu^-) \cdot \sigma(pp \rightarrow bX \rightarrow \psi(2S)X) = 0.235 \pm 0.006 \pm 0.013 \pm 0.009 \ \text{nb}\]
Above $p_T \approx 20$ GeV, more than 50% of the J/ψ and $\psi(2S)$ mesons result from B decays.