

DIS 2012 25th – 30th March 2012 Bonn

Heavy Flavour Production from ATLAS

Adam Barton Lancaster University On behalf of the ATLAS collaboration

Introduction

- Objectives of ATLAS heavy flavour physics programme:
- Test theoretical models for production within the Standard Model
- Search for new physics, such as rare decays and source of CP violation in B-decays
- I will present
 - the non-prompt J/ψ cross-section/fraction measurement
 - The D meson cross-sections
 - The average B meson lifetime measurement
 - The mass/lifetime measurements of some Exclusive decays
- There will be separate talks on
 - B-jets
 - rare exclusive decays such as $B_s \rightarrow \mu\mu$
 - quarkonium production

The ATLAS detector

Muon Spectrometer (MS) 0.5 – 2 T toroid magnet, Four detector technologies Dedicated tracking chambers

LHC p-p run for 2011 finished, after operating at 7 TeV - more than 5 fb⁻¹ accumulated

Acceptance in pseudo-rapidity up to 2.5 for Inner Detector, up to 2.7 for muon spectrometer Three Level trigger System: L1(Hardware) + HLT (L2 + EF software)

Good muon momentum resolution provided by Inner Detector combined with Muon Spectrometer measurement

> Inner Detector(ID): Si Pixels + Si strips (SCT) + Transition Radiation Tracker(TRT) 2T solenoid field

- Exploit the muon spectrometer to reconstruct muons cleanly and efficiently.
- Low $p_T B$ hadrons are reached with di-muon triggers
- Di-muon decays of J/ψ and other onia provide a clean signature to trigger events – very good for $B \rightarrow J/\psi$ and $B \rightarrow \mu\mu$

ZV

NIVERSIT

ATLAS open charm cross-section with DIS 2012 Diversity of Bonn

- $D^{*\pm}, D^{\pm}, D^{\pm}, D^{\pm}_{S}$ charmed mesons reconstructed for pT > 3.5 GeV and |y| < 2.1
- Efficiency and acceptance taken from MC

ATLAS measurement shows that the charm cross-section is higher than predicted by models - especially at low pTs

- $D^{*\pm}, D^{\pm}, D^{\pm}_{S}$ charmed mesons reconstructed for pT > 3.5 GeV and |y| < 2.1
- ID tracks are used to extract masses & yields with fits to M or ΔM distributions

Measurements of properties of B mesons decaying with J/ψ in final state

 $B_d^0 \to J/\psi K_s$

- Neutral B mesons are ideal for testing predictions of the standard model for CKM matrix
- Tests predictions of HQET and pQCD

Parameter	No proper decay time cut	$\tau_B > 0.35 \text{ ps}$
M (MeV)	5278.5 ± 1.2	5279.7 ± 1.0
S_m	1.19 ± 0.07	1.15 ± 0.05
$N_{ m sig}$	781 ± 45	616 ± 30
$N_{\rm bkg}$	4436 ± 75	910 ± 34
σ (MeV)	24.3 ± 1.4	24.3 ± 1.1
Fit $\chi^2/N_{\rm d.o.f.}$	1.35	1.28

 μ^{-}

LANCASTER

 $\Lambda_{\rm b} \rightarrow J/\psi(\mu^+\mu^-)\Lambda(p^+\pi^-)$

- Tests HQET and pQCD $\left[\Delta\Gamma(\Lambda_b^0, B_d^0)\right]$
- Can study production polarisation
- Applying the τ cut kills the direct J/ψ background
- Mass consistent with PDG consistent with PDG (5620.2 ± 1.6 MeV)

Parameter	No proper decay time cut	$\tau_B > 0.35 \text{ ps}$
M (MeV)	5618.7 ± 1.6	5620.6 ± 1.6
S_m	1.32 ± 0.08	1.40 ± 0.07
$N_{ m sig}$	689 ± 40	579 ± 31
$N_{\rm bkg}$	1761 ± 52	699 ± 33
σ (MeV)	35.0 ± 2.1	37.2 ± 2.0

Candidates / 15 Me

5600

5500

5400

5700

A Barton | Lancaster University

 $M_{J/\psi\Lambda(\overline{\Lambda})}$ (MeV)

5800

 $N = 579 \pm 31$

5900

A Contract of Average B lifetime States and the second sec

- Heavy Quark Effective theory (HQET) predicts the lifetime ratio between different species to the order of 1%
- Measuring the average lifetime of a mixture of B-hadron decaying to final states including J/ψ demonstrates measurements for exclusive channels.
- A pseudo-proper-lifetime is fitted and a correction "f-factor" is used to calculated the proper decay time

 $t^* = \frac{L_{xy}m^{J/\psi}}{p_T(J/\eta)}$

 $m_{PDG} p$

 $<\tau_{b}>=1.489\pm0.016\pm0.043$ ps

Consistent with Tevatron values

Largest sources of systematic uncertainty from background model and alignment – improved in new analyses from improved understanding

Physics analysis of $B_s^0 \rightarrow J/\psi \phi(KK)$

- $B_s^0 \rightarrow J/\psi \phi(KK)$ allows measurement of B_s^0 mixing phase responsible for CP violation
- SM prediction for CP asymmetry is small, any observation otherwise = new physics
- The width difference ΔΓs between light (Bs^L) & heavy (Bs^H) Eigen states
- $B_d^0 \rightarrow J/\psi K^{*0}$ has an identical topology and higher cross section useful test sample
- The B meson is reconstructed in the analysis allowing the full proper decay time to be used

• Mixing of flavour eigenstates are governed by:

$$i\frac{d}{dt}\left(\begin{array}{c}B_{s}^{0}(t)\\\overline{B}_{s}^{0}(t)\end{array}\right) = H\left(\begin{array}{c}B_{s}^{0}(t)\\\overline{B}_{s}^{0}(t)\end{array}\right) \equiv \underbrace{\left[\left(\begin{array}{c}M_{0} & M_{12}\\M_{12}^{*} & M_{0}\end{array}\right) - \frac{i}{2}\underbrace{\left(\begin{array}{c}\Gamma_{0} & \Gamma_{12}\\\Gamma_{12}^{*} & \Gamma_{0}\end{array}\right)\right]}_{\text{decay matrix}}\left(\begin{array}{c}B_{s}^{0}(t)\\\overline{B}_{s}^{0}(t)\end{array}\right)$$

But there are also the mass eigenstates

$$\frac{|B_s^H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle}{|B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle}$$

•
$$\Delta m_s = m_H - m_L \approx 2|M_{12}|$$

•
$$\phi_s^{SM} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \sim -0.004$$

• $\Delta\Gamma = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}|\cos(2\phi_s^{SM})$

- CP violation occurs in $B_s \rightarrow J/\psi \phi$ through interference of decays with and without mixing
- An untagged angular analysis can lead to a measure of β_S and $\Delta\Gamma$
- A tagged analysis is more sensitive to New Physics

• We will measure the NP phase $\phi_S^{NP} = -2\beta_S^{NP} \left\| \frac{V_{us}V_{us}^*}{V_{us}V_{s}^*} \right\|_{Q,Q}^{\overline{Q,Z}}$

 $\beta^{(1,0)}$

 $\overline{V_{cs}V_{cb}^*}$

- Simultaneous fit to invariant mass & proper decay time per candidate error fit $au_{B,ps} extsf{m}_{B} extsf{MeV}$
- Testing ground for full angular fit

NIVERSIT

- Mass and lifetimes agree with world average
- These results will build up to the CP violation analysis

A Barton | Lancaster University

 $N_{\rm sig}$

 2750 ± 90

 463 ± 26

 5279.0 ± 0.8

 1.41 ± 0.08 5363.7 ± 1.2

 1.51 ± 0.04

Conclusions and Outlook

- Tests predictions of pQCD and NRQCD models:
 - Λ^0_B production
 - $\ B^0_d \to J/\psi K_s$
- Tests Heavy Quark Effective Theory (HQET)

$$-\Lambda_{\rm b} \to \frac{J}{\psi(\mu^+\mu^-)\Lambda(p^+\pi^-)}$$

$$- B^0_d \to J/\psi K_s$$

- High precision measurement of CP violation in $B_s^0 \rightarrow J/\psi \phi(KK)$, $B_d^0 \rightarrow J/\psi K_s$
- See other talks for:
 - $B_s \rightarrow \mu^+ \mu^-$ + rare decays
 - B-jet cross sections
 - Quarkonia

Backups

Non Prompt J/ ψ Fraction

- At the LHC J/ψ can be produced *"promptly"* from pp collision or indirectly from B-hadrons.
- Separate out non-prompt component of J/ψ.
- Discriminate using pseudo proper lifetime
- Much of the B-physics studied at ATLAS is through Onia decay channels, allowing us to trigger on the muons in the decay

Inclusive b cross-section by b-tagge jets

- b-jets are 3.5-5% of all jets
- Two methods for b-tagging
 - Search for *displaced vertex*, calculate the invariant mass of associated tracks
 - Search for muon inside jet for B semi-leptonic decays, calculate the muon pt w.r.t. the jet axis
- Both approaches are consistent

Agrees well with vertex based measurement POWHEG (NLO) + Pythia is consistent within uncertainties

MC@NLO + Herwig 6 is consistently too low

LANCASTER UNIVERSITY

A Barton | Lancaster University

Inclusive bb di-jet cross section vs Mass, Δφ

<u>Di-jet mass</u>: All theory predictions compatible with measured crosssections

<u>Di-jet azimuthal angle</u>: enhanced back-toback behaviour is well reproduced by all generators

