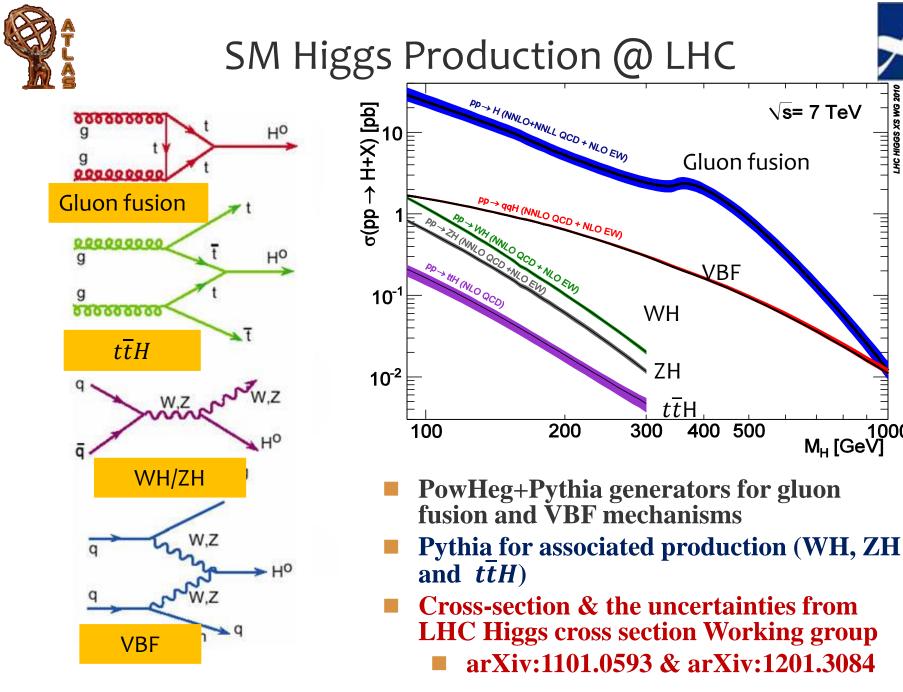
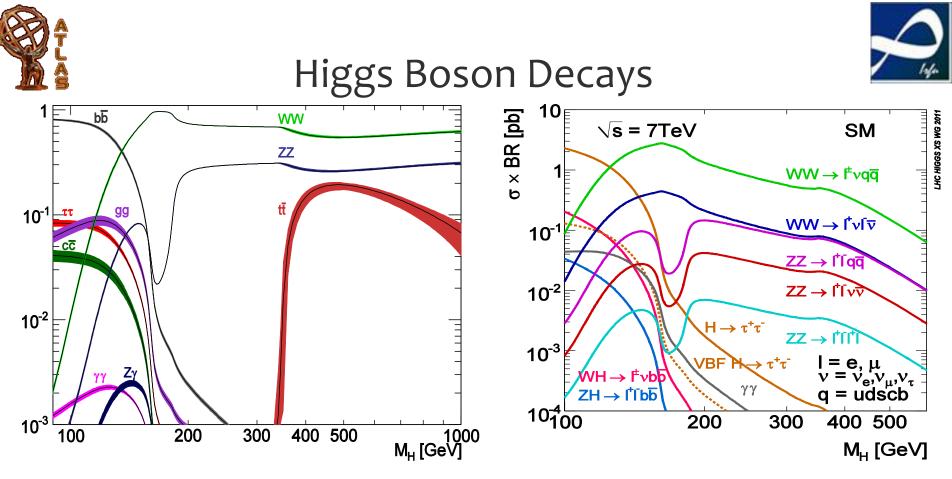
Search for the Standard Model Higgs Boson in ATLAS

XX International Workshop on Deep-Inelastic Scattering and Related Subjects University of Bonn March 26-30, 2012


> Prolay Kumar Mal SPP/IRFU, CEA-Saclay (for ATLAS collaboration)


Outline

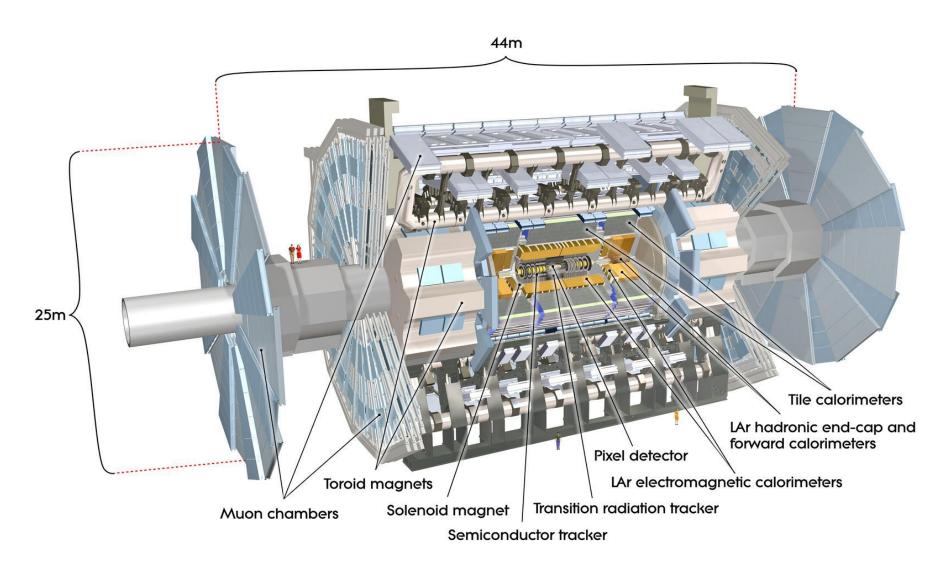
- •SM Higgs Production & decay modes
- •LHC performance & ATLAS data-taking in 2011
- •SM Higgs Search Strategies in ATLAS
 - Production rate ($\sigma \times BR$) depending on the Higgs boson mass (m_H)
 - Higgs boson mass resolution
- Results with all channels combined
- Summary & Conclusions

LHC HIGGS XS WG 2010

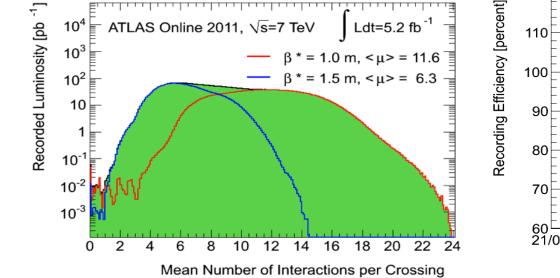
1000 M_H [GeV]

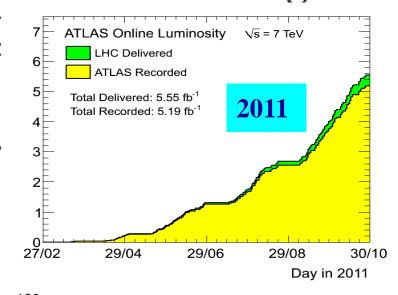
• m_H>135 GeV:

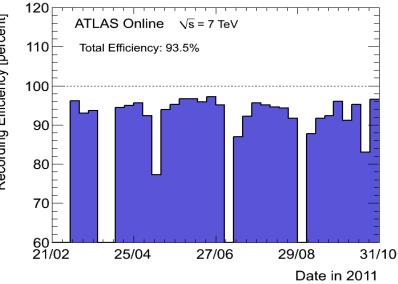
• $H \rightarrow ZZ$ and $H \rightarrow WW$ are dominant decay modes


- m_H<135 GeV:
 - $H \rightarrow b\overline{b}$ and $H \rightarrow \tau\tau$ are the dominant modes
 - $H \rightarrow \gamma \gamma$ has small branching ratio but with clean signature

DIS 2012, University of Bonn, March 26-30, 2012



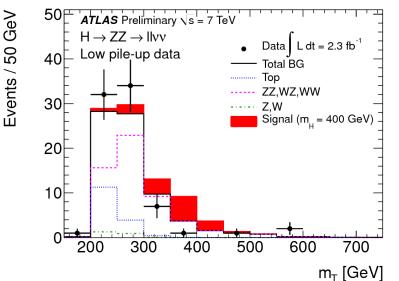

<u>A Toroidal LHC ApparatuS</u>



LHC performance & ATLAS data-taking

- The SM Higgs searches presented here are with full 2011 dataset i.e., 4.6-4.9 fb⁻¹ (depending on search channel).
 Excellent performance of the ATLAS¹
 - Excellent performance of the ATLAS^{²/₂} detectors with over all >93% datataking efficiency.

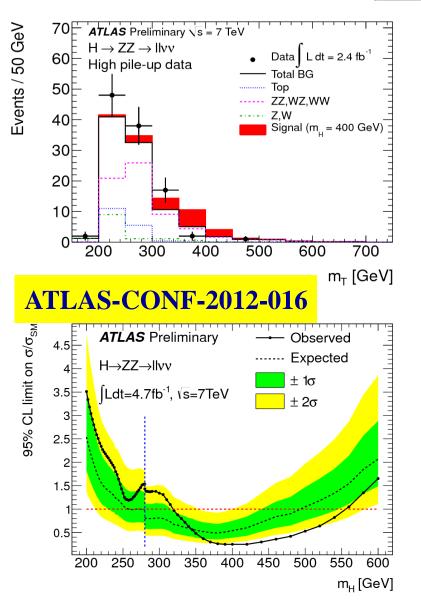
Searches in the following channels have been pursued with 2011 data

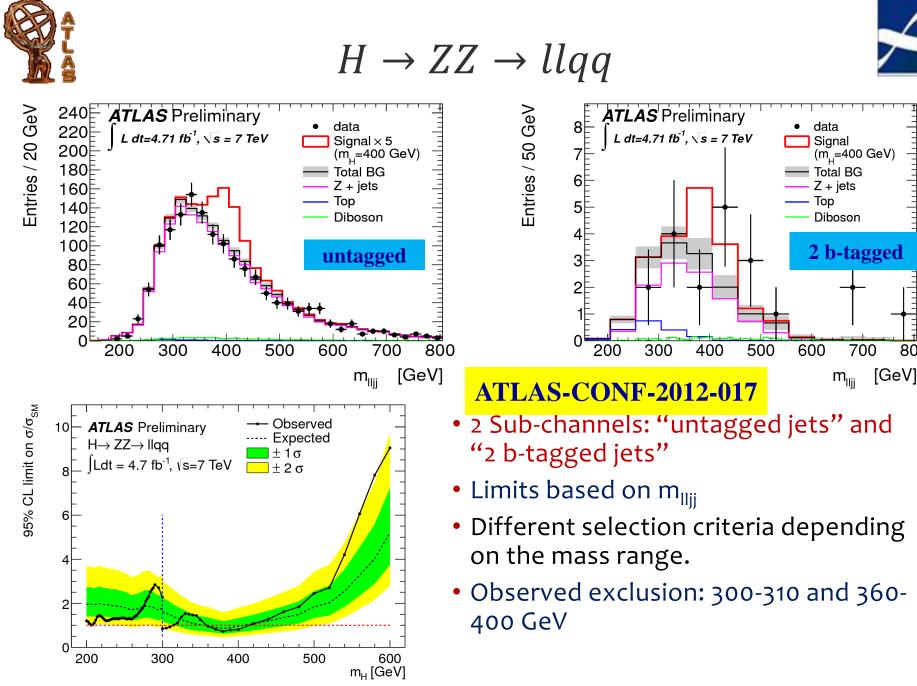

	0	·			
Channel	Higgs mass range (GeV)	∫ <i>Ldt</i> (fb⁻¹)	Reference		
Low m _H , good mass ı	resolution				
$H ightarrow \gamma \gamma$	110-150	4.9	arXiv:1202:1414 arXiv:1202:1415		
$H \rightarrow ZZ^{(*)} \rightarrow 4l$	110-600	4.8			
Low m _H , limited mas	s resolution				
$H \to WW^{(*)} \to lvlv$	110-600	4.7	CONF-2012-012 CONF-2012-014		
$H \to \tau \tau (ll, lh, hh)$	100-150	4.7			
$VH, H ightarrow b\overline{b}$	110-130	4.7	CONF-2012-015		
High m _H					
H ightarrow ZZ ightarrow llvv	200-600	4.7	CONF-2012-016		
$H \rightarrow ZZ \rightarrow llqq$	200-600	4.7	CONF-2012-017		
$H \rightarrow WW \rightarrow lvqq$	300-600	4.7	CONF-2012-018		

Exclusion limits on $\mu = \sigma/\sigma_{SM}$ @ 95% confidence level using CL_s method [J Phys G28(2002) 2693-2704]

DIS 2012, University of Bonn, March 26-30, 2012

 $H \rightarrow ZZ \rightarrow ll \nu \nu$

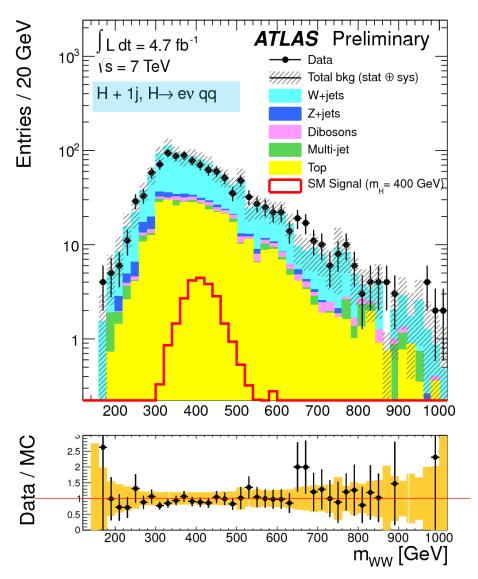



 For high mass searches the most sensitive channel

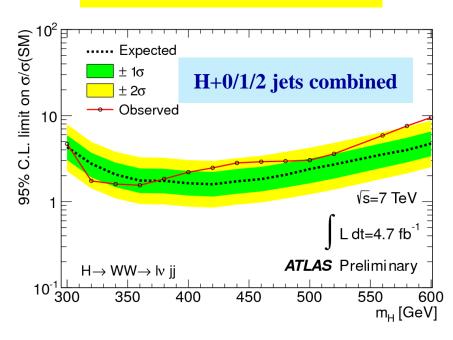
• Limits are based on

$$m_T = \sqrt{\left(\left(E_T^{ll}\right) + \left(E_T^{miss}\right)\right)^2 - \left(\left|p_T^{ll} + p_T^{miss}\right|\right)^2}$$

- Missing E_T is sensitive to the Pileup
- 4 sub-channels: (ee,μμ)⊗(low-,high-Pileup)
- Different selection criteria depending on the mass range.
- Observed exclusion: 320-560 GeV

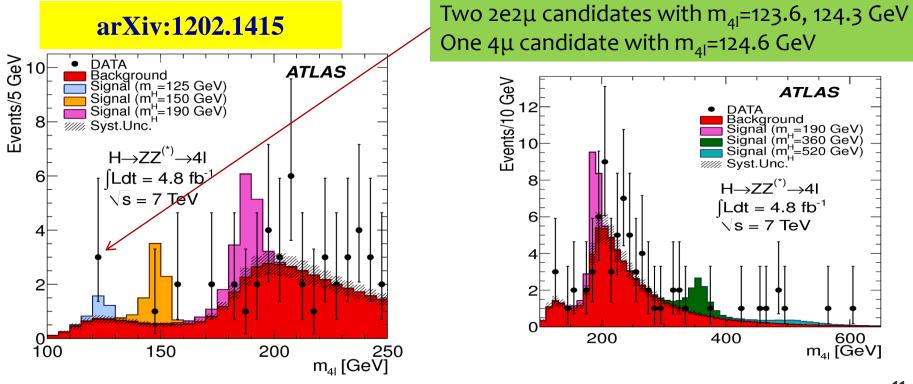


800



$H \to WW \to l\nu q q$

- Higgs mass reconstruction through m_{qq}=m_W and m_{Iv}=m_W
- 3 Sub-channels: 0, 1 and 2 jets (VBF contribution)
- Background modeling: fitting m_{Ivqq} spectrum from data


ATLAS-CONF-2012-018

$H \rightarrow ZZ^{(*)} \rightarrow 4l$: The Golden channel

- Very clean signal with excellent mass resolution (1.5-2% for m_H≈130 GeV) from 4 well reconstructed leptons (e,μ)
 - For m_H>350 GeV , natural width dominates
- SM ZZ^(*) production is the irreducible background
- Lepton identification well modeled in MC; not affected by the event pileup
- Different selection criteria are applied for m₄₁>180 GeV and m₄₁<180 GeV

DIS 2012, University of Bonn, March 26-30, 2012



$H \rightarrow ZZ^{(*)} \rightarrow 4l$: The Golden channel

- $ZZ^{(*)}$ and $t\overline{t}$ are estimated from MC
- Z+jets kinematics from MC while normalized to data control region
- Limits are based on m₄₁ distribution
- Event Yields:

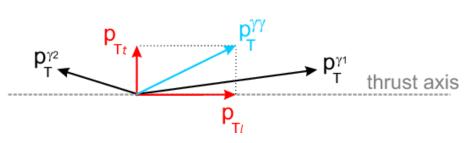
	4μ	2e2µ	4e		
Expected	18.6±2.8	29.7±4.5	13.4±2.0		
Observed	24	30	17		

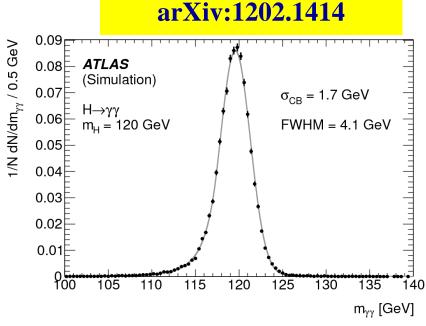
Observed limit: 134-156, 182-233, 256-265, 268-415 GeV

arXiv:1202.1415

95% CL limit on σ/σ_{SM} 95% CL limit on $\alpha/\sigma_{SM}_{0,1}$ - Observed CL - Observed CL_s ATLAS ATLAS $H \rightarrow ZZ^{(*)} \rightarrow 4I$ $H \rightarrow ZZ^{(*)} \rightarrow 4I$ ----- Expected CL ----- Expected CL_s Ldt = 4.8 fb⁻¹ $Ldt = 4.8 \text{ fb}^{-1}$ $\pm 1\sigma$ $\pm 1\sigma$ ∖s=7 TeV ∖s=7 TeV $\pm 2 \sigma$ $\pm 2 \sigma$ 10[±] 10 160 200 250 300 350 400 450 500 550 600 110 120 130 140 150 170 180 m_µ [GeV] m_⊔ [GeV]

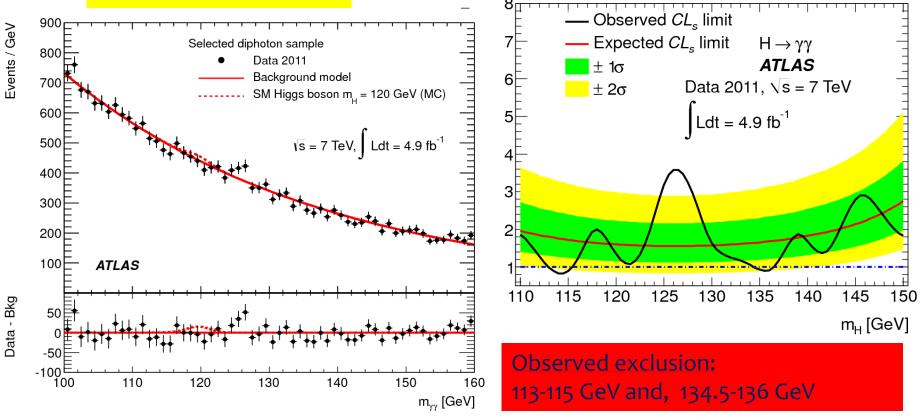
Small excesses observed with local significance values of 2.1σ, 2.2σ and 2.1σ for m_H of 125, 244 and 500 GeV respectively


DIS 2012, University of Bonn, March 26-30, 2012

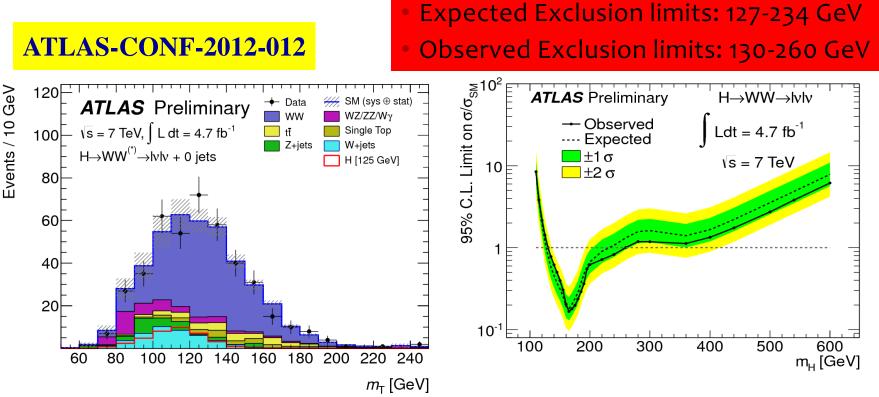


 $H \rightarrow \gamma \gamma$

- Br($H \rightarrow \gamma \gamma$) is very small (0.2%) but with distinct signatures
- Good γγ mass resolution is crucial for identifying signal peak over the continuous background distribution (γγ, γ+jet and dijet).
- Search consists of 9 orthogonal categories having different $m_{\gamma\gamma}$ resolutions [photon $\eta \otimes$ conversion status $\otimes p_T^{\gamma\gamma(Thrust)}$]
 - Signal extraction by fitting $m_{\gamma\gamma}$ simultaneously.
- Background modeling:
 - Exponential function with free slope and normalization
- Signal $m_{\gamma\gamma}$ modeling:
 - Sum of Crystal Ball (core) and Gaussian (tail) functions.

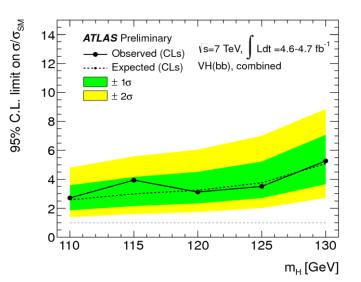


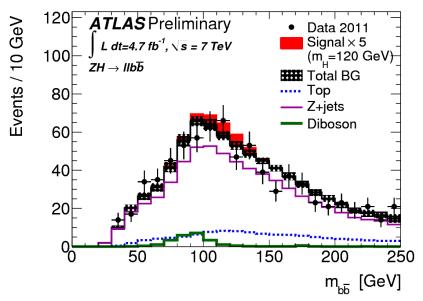
 $H \rightarrow \gamma \gamma$

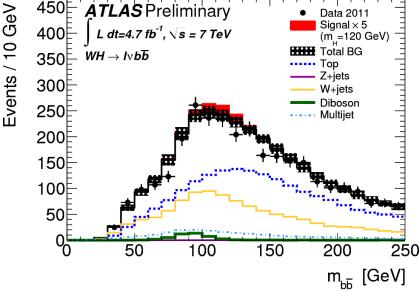

- An excess of events observed around 126.5 GeV
 - Local significance: 2.8σ
 - Global significance: 1.5 σ (Look-Elsewhere-Effect for m_H range of 110-150 GeV)

 $H \to WW^{(*)} \to lvlv$

- Most sensitive channel over a broad range of Higgs mass (120-180 GeV)
- Limits derived using $m_T = \sqrt{\left(\left(E_T^{ll}\right) + \left(E_T^{miss}\right)\right)^2 \left(\left|p_T^{ll} + p_T^{miss}\right|\right)^2}$ owing to the presence of two neutrinos
- 9 sub-channels (ee, eµ, µµ) \otimes (0, 1, 2 jets[VBF])
- Background processes: Drell-Yan/Z+jets, WW, $t\overline{t}$, QCD, W+jets

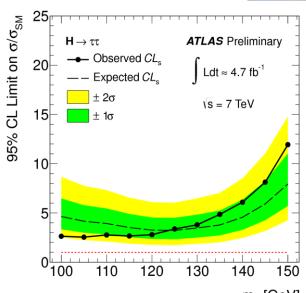

DIS 2012, University of Bonn, March 26-30, 2012

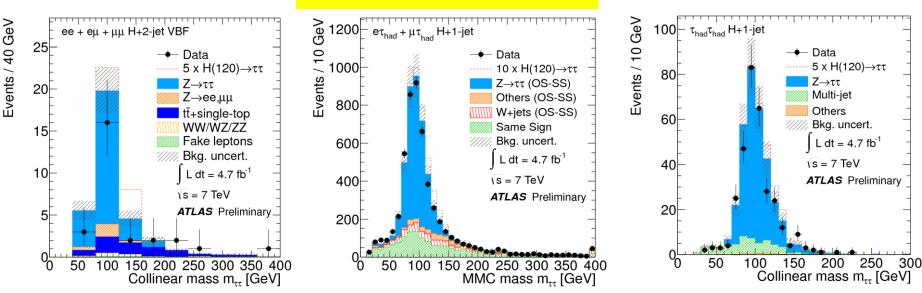

 $(W/Z)H \rightarrow (Iv/II,vv) bb$



- Requirement of exactly 2 b-tagged jets
- W/Z and Higgs boson recoil away with significant $\ensuremath{p_{\text{T}}}$
 - Event classification depending on p_T^W , p_T^Z and E_T^{miss} for $WH \rightarrow lvbb$, $ZH \rightarrow llbb$ and $ZH \rightarrow vvbb$ respectively.
- Major background processes: W/Z+b-jets, QCD, top
- Systematics on background processes are crucial
 - 20%, 26% and 27% for $WH \rightarrow lvb\overline{b}$, $ZH \rightarrow llb\overline{b}$ and $ZH \rightarrow vvb\overline{b}$ respectively.

ATLAS-CONF-2012-015

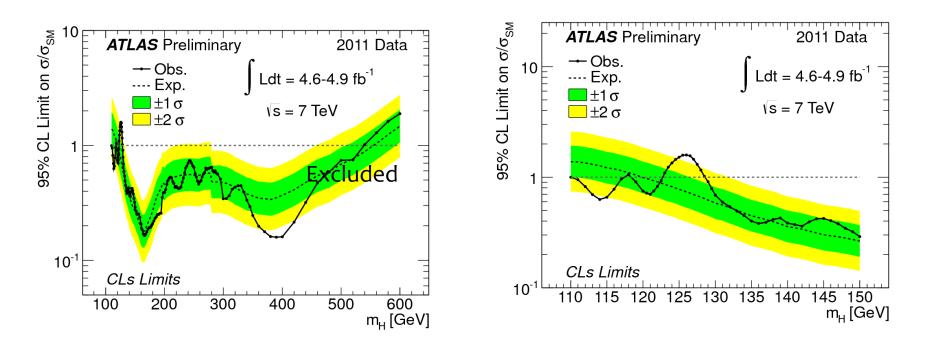



$H \rightarrow \tau \tau \rightarrow (ll 4 \upsilon, l \tau_{had} 3 \upsilon, \tau_{had} \tau_{had} 2 \upsilon)$

- Mass reconstruction using collinear approximation
 - Missing Mass calculator (MMC) for $H \rightarrow \tau \tau \rightarrow l \tau_{had} 3 v$
- Sub-channels with different number of jets [0, 1 jets, 2-jets VH/VBF]
- Major background processes
 - Irreducible $Z \rightarrow \tau \tau$: normalization from MC; shape from $Z \rightarrow \mu \mu$ data through embedding simulated τ -leptons (replacing the muons).
 - Instrumental effects: fake leptons and fake τ -jets from data

m_H [GeV]

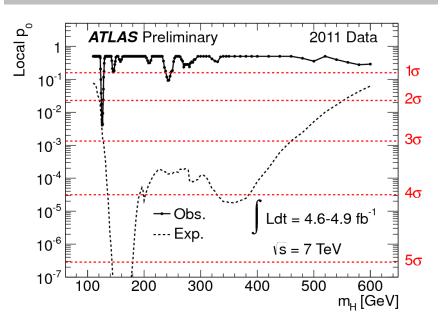
ATLAS-CONF-2012-015


DIS 2012, University of Bonn, March 26-30, 2012

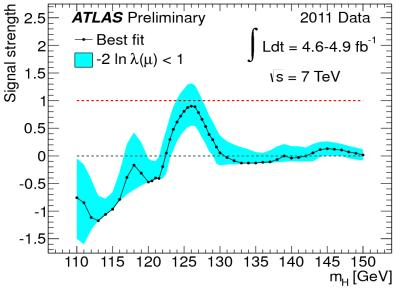
SM Higgs Combination

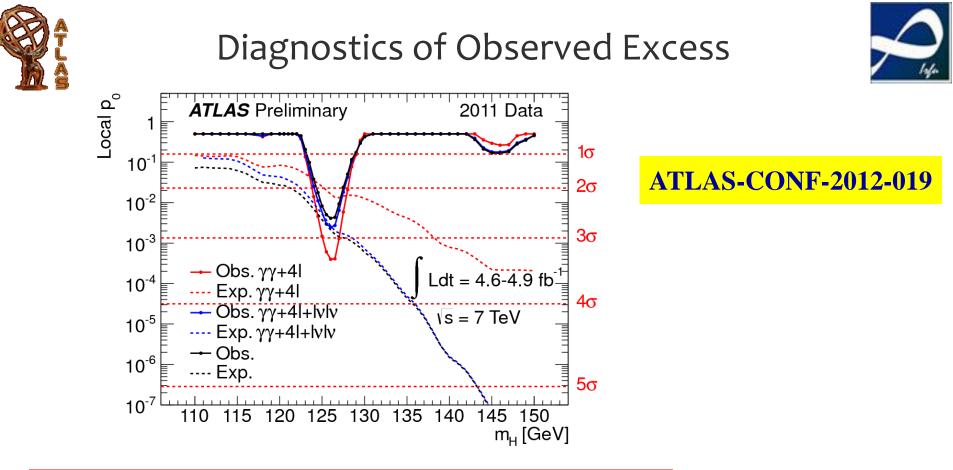
ATLAS-CONF-2012-019

Expected Exclusion @ 95% CL: 120-555 GeV Observed exclusion @95% CL: 110-117.5, 118.5-122.5, 129-539 GeV Observed exclusion @ 99% CL: 130-486 GeV



An excess of observed events at m_H≈126 GeV


ATLAS-CONF-2012-019

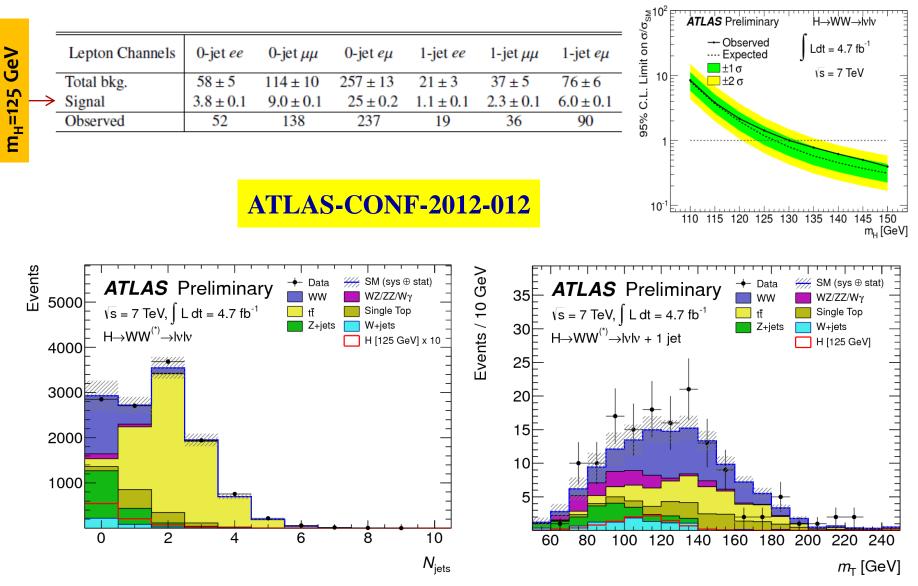

- Observed local significance for m_H =126 GeV: 2.5 σ
- Expected local significance assuming SM Higgs mass of 126 GeV: 2.8σ
- Best-fit for signal strength at $m_{\rm H}$ =126 GeV: $\hat{\mu} = 0.9^{+0.4}_{-0.3}$
- Look-Elswhere-Effect: Global probability for such observation is 30% for 110<m_H<600 GeV

An excess of observed events at m_H≈126 GeV

- Contribution from high resolution channels:
 - $H \rightarrow \gamma \gamma \& H \rightarrow ZZ^{(*)} \rightarrow 4l$ combined local significance at m_H=126 GeV : 3.5 σ
- Not observed in any other channels: $H \to WW^{(*)} \to lvlv$, $H \to \tau\tau$, $H \to b\overline{b}$
 - Considering all channels the local significance for $m_{\rm H}\text{=}126$ GeV: 2.5 σ

Summary & Conclusions

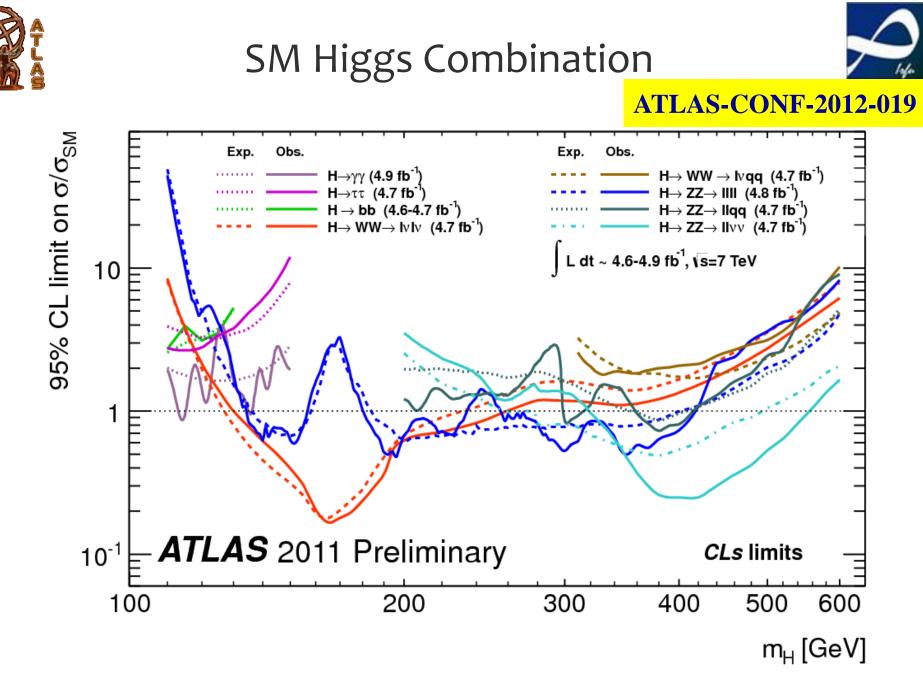
- Excellent LHC & ATLAS performance during 2011 operation
- ATLAS has performed extensive searches for the SM Higgs boson using the full dataset from 2011 LHC operation.
 - Combined ATLAS results exclude wide range of SM Higgs boson masses
 - 110-117.5, 118.5-122.5, 129-539 GeV @ 95% CL
 - 130-486 GeV @ 99% CL
 - The observed excess in the low-m_{\rm H} range has the maximum local significance of 2.5 σ
 - The excess of events near 126 GeV is compatible with the SM Higgs
 - Statistical significance is not yet large enough to claim either evidence or discovery.
- 2012 LHC operation with pp collisions at 8 TeV is about to start and larger dataset is expected -- stay tuned.


Extras

DIS 2012, University of Bonn, March 26-30, 2012

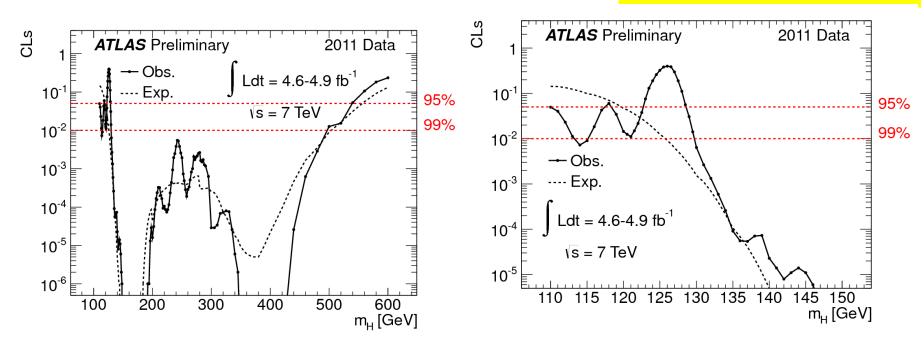
 $H \to WW^{(*)} \to lvlv$




 $(W/Z)H \rightarrow (Iv/II,vv) b\overline{b}$

	~											
	Bin $ZH \to \ell^+ \ell^- b\bar{b}$				$WH \rightarrow \ell \nu b \bar{b}$			$ZH \rightarrow v\bar{v}b\bar{b}$				
		$p_{\rm T}^Z[{\rm GeV}]$			$p_{\rm T}^W[{\rm GeV}]$			$E_{\rm T}^{\rm miss}[{ m GeV}]$				
		0-50	50-100	100-200	>200	0-50	50-100	100-200	>200	120-160	160-200	>200
>	Number of events for $80 < m_{b\bar{b}} < 150 \text{ [GeV]}$											
m _H =120 GeV	Data	139	164	62	13	622	597	276	15	103	22	24
	→Signal	1.4 ± 0.2	2.0 ± 0.3	1.7 ± 0.3	0.4 ± 0.1	4.7 ± 0.9	5.2 ± 1.0	4.1 ± 0.9	1.4 ± 0.3	2.3 ± 0.5	1.3 ± 0.3	1.8 ± 0.5
	Тор	18	25	7	0	260	383	219	8.6	42	9	4
н Н	W+jets	-	-	-	-	285	181	72	12	13	7	4
-	Z+jets	132	126	58	5.6	0.4	0.3	0.1	0.0	33	12	7
	Diboson	8	6	4	1	13	13	8	1	5	5	4
	Multijet	-	-	-	-	64	42	4	1	1.2	0.2	0.4
	Total Bkg	157 ± 15	157 ± 11	70 ± 7	6 ± 2	625 ± 36	620 ± 24	303 ± 13	23 ± 4	94 ± 10	33 ± 5	20 ± 5

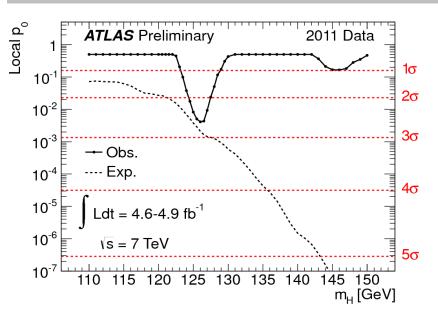
ATLAS-CONF-2012-015

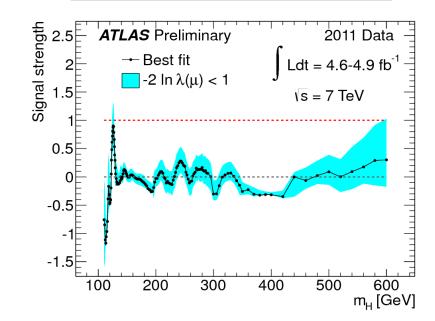


SM Higgs Combination

ATLAS-CONF-2012-019

Expected Exclusion @ 95% CL: 120-555 GeV Observed exclusion @95% CL: 110-117.5, 118.5-122.5, 129-539 GeV Observed exclusion @ 99% CL: 130-486 GeV




An excess of observed events at m_H≈126 GeV

ATLAS-CONF-2012-019

- Observed local significance for m_H =126 GeV: 2.5 σ
- Expected local significance assuming SM Higgs mass of 126 GeV: 2.8σ
- Best-fit for signal strength at $m_{\rm H}$ =126 GeV: $\hat{\mu} = 0.9^{+0.4}_{-0.3}$
- Look-Elswhere-Effect: Global probability for such observation is 30% for 110<m_H<600 GeV

Best fit of $\mu = \sigma / \sigma_{SM}$