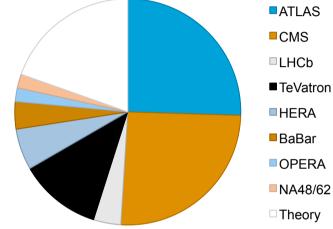

Summary of the Electroweak and Searches Working Group (Part 1).

Introduction
SM and BSM Higgs Searches
Non-SUSY Searches

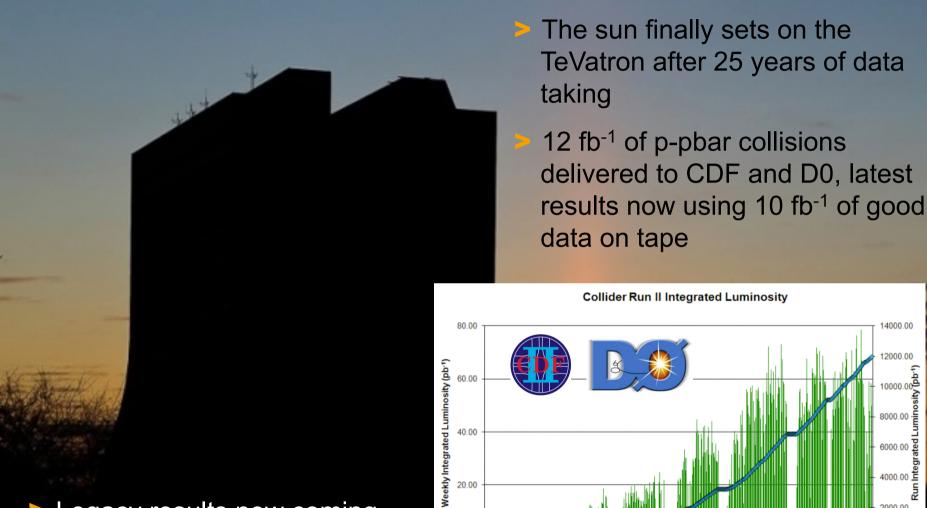
David South (DESY)
Andreas Weiler (DESY)
Hwi Dong Yoo (Purdue University)



Electroweak and Searches Parallel Sessions

51 talks in total, including joint sessions with the Structure Functions and Heavy Flavour groups

covered in this talk


- > The agenda was broken down as follows:
 - SM Higgs
 - BSM Higgs
 - Non-SUSY Searches
 - SUSY Searches
 - W and Z Properties
 - W and Z Production (covered in SF summary)
 - Exotic Top
 - Exotic Heavy Flavour (covered in HF summary)
- Many new results shown (often more than 10 analyses in one talk!), impossible to give them all justice
 - Apologies to those missed or only briefly shown

The TeVatron

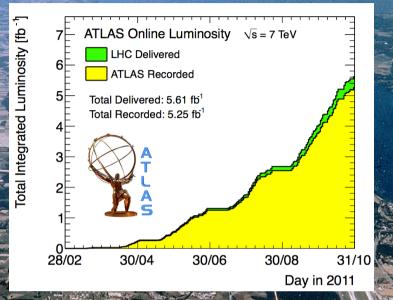
The TeVatron

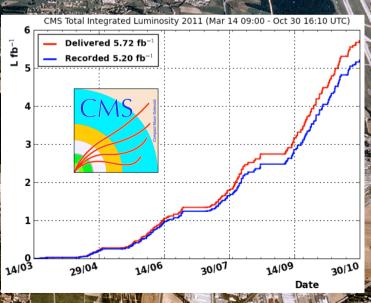
Week #

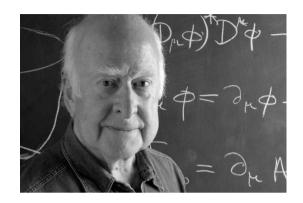
(Week 1 starts 03/05/01)

Legacy results now coming out of the collaborations using the up to the full data set

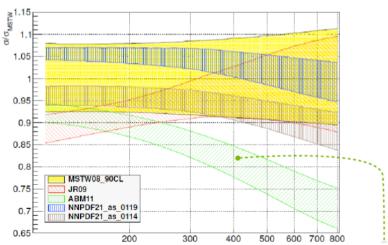
The LHC

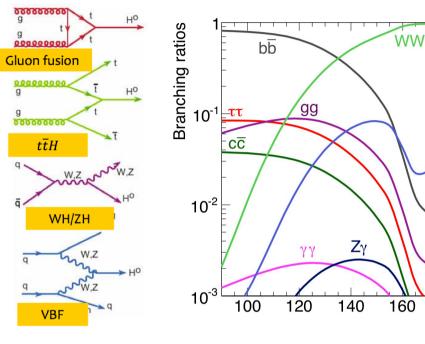



The LHC

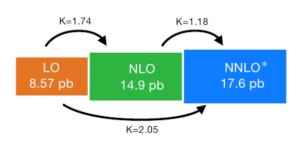

Over 5 fb⁻¹ of pp data delivered to ATLAS and CMS

Many of the results in our session already include most of this data





Where else to start? The SM Higgs



The EWSB mechanism which gives fermions mass and explains the heavy W and Z bosons

- Nice overview of given by Franz on the status of the current SM Higgs theory
- Production cross section under control
- > Gluon fusion:
 - Large kFactors
 - PDF differences

180

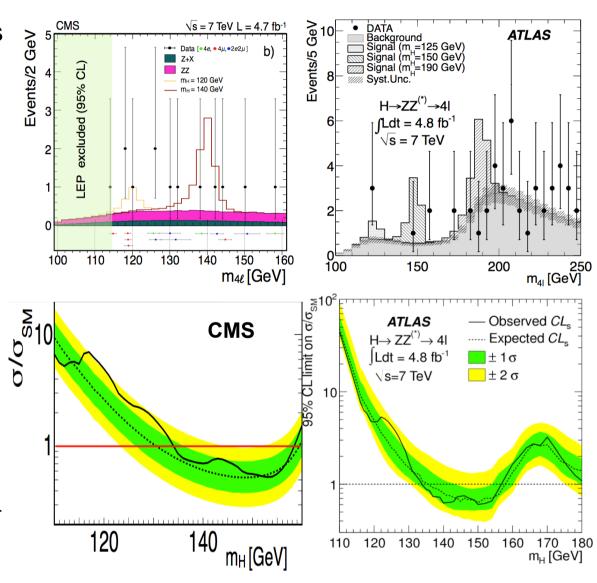
M_⊢ [GeV]

200

Higgs searches at the LHC: Impressive and substantial

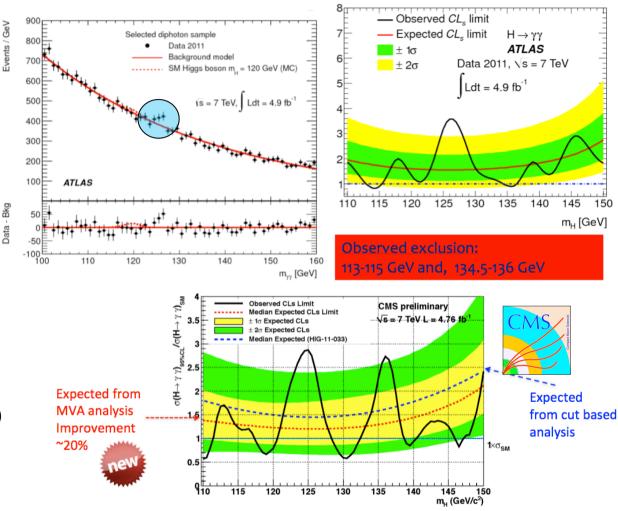
Channel	Higgs mass range (GeV)	∫ <i>£dt</i> (fb¹)	Reference	
Low m _H , good mass resolution				
$H \rightarrow \gamma \gamma$	110-150	4.9	arXiv:1202:1414	
$H \rightarrow ZZ^{(*)} \rightarrow 4l$	110-600	4.8	arXiv:1202:1415	
Low m _H , limited mass resolution				
$H \rightarrow WW^{(*)} \rightarrow lvlv$	110-600	4.7	CONF-2012-012	
$H \rightarrow \tau \tau (ll, lh, hh)$	100-150	4.7	CONF-2012-014	
$VH, H \rightarrow b\overline{b}$	110-130	4.7	CONF-2012-015	
High m _H				
H o ZZ o llvv	200-600	4.7	CONF-2012-016	
$H \rightarrow ZZ \rightarrow llqq$	200-600	4.7	CONF-2012-017	
$H \rightarrow WW \rightarrow lvqq$	300-600	4.7	CONF-2012-018	

- > Full spectrum of production and decay models covered by ATLAS (top) and CMS (bottom) analyses
- Multiple decay channels and analysis sub-channels investigated

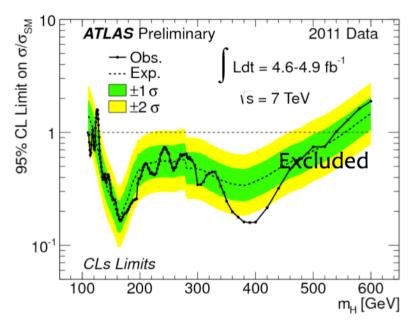

channel	mass range (GeV)	M _H resolution	
H → γγ	110 - 150	1-2%	
H → тт → ет _һ /µт _һ /еµ + X	110 - 145	20%	
H → ττ → μμ + X	110 - 140	20%	
WH → еµть/µµть + v	110 - 140	20%	
(W/Z)H → bb	110 - 135	10%	
H → WW → ℓvℓv	110 - 600	20%	
WH → W(WW*) → 3ℓ3v	110 - 200	20%	
H → ZZ→ 4ℓ	110 - 600	1-2%	
H → ZZ→ 2ℓ2q	(130 - 164) + (200 - 600)	3%	
H → ZZ→ 2ℓ2T	190 - 600	10-15%	
H → ZZ→ 2ℓ2v	250 - 600	7%	

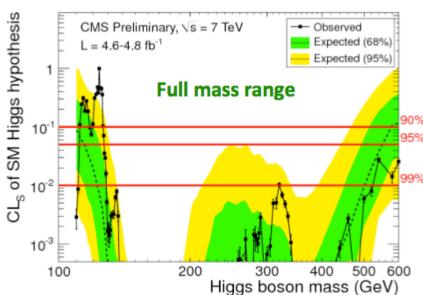
- A brief look here on only two decay channels:
- > ZZ → 4 leptons
- > H→ γγ

Prolay Kumar Mal Pietro Govoni

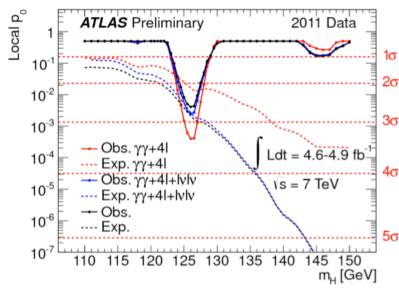

Higgs to ZZ with 4 charged lepton decay

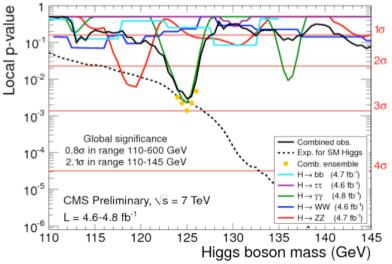
- Clean channel: 2 high mass pairs of isolated electrons or muons with a narrow mass peak and small background
- Select 4 leptons of appropriate charge and flavour combination
- Interesting events around 120 GeV
- Significance of excess at lower masses:
 - CMS: local significance 2.5σ
 - ATLAS: local significance 2.1σ
- Globally much less significant


Higgs to γγ

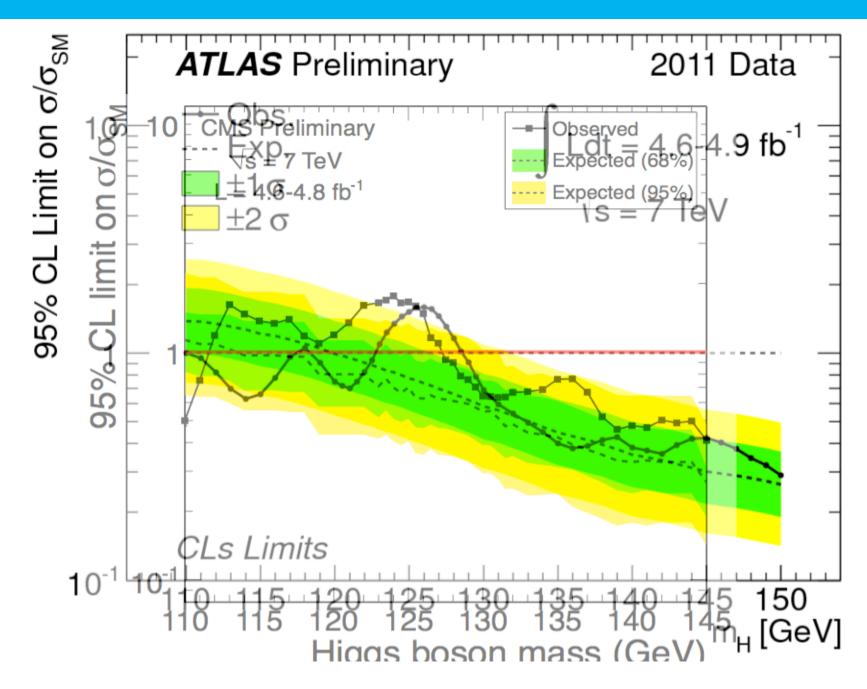

- Small branching ratio, 0.1%, but clean signature and good mass resolution
- Analysis divided into different catagories:
 - ATLAS: 9 orthogonal categories having different m_{γγ} resolutions
 - CMS: VBF tagged + 4
 event classes according to
 BDT decision (resolution,
 photon ID, kine variables..)
- Channel displaying excess with largest <u>local</u> significances 2.8σ / 2.9σ for ATLAS / CMS

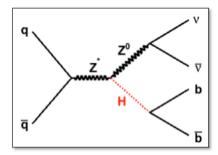
- Excluded at 95% CL: 110.0-111.0, 117.5-120.5, 128.5-132.0, 139.0-140.0, 146.0-147.0 GeV
- Cut based and cross-check MVA analysis give consistent results

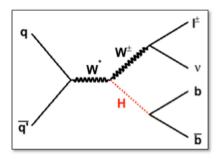

LHC Higgs results: combined channels

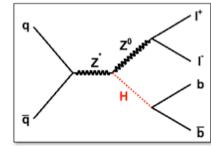


- Results from ATLAS and CMS for combined channels, using all 2011 data
- Observed exclusion @ 95% CL:
 - ATLAS: 110-117.5, 118.5-122.5, 129-539 GeV
 - CMS: 127.5-600 GeV
- Expected exclusion @ 95% CL:
 - ATLAS: 120-555 GeV
 - CMS: 114.5-543 GeV

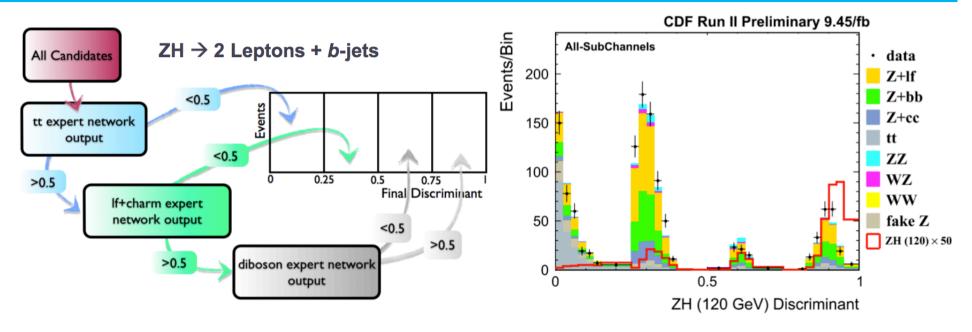

LHC Higgs results: combined channels

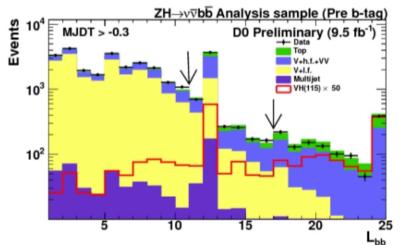



- Results from ATLAS and CMS for combined channels, using all 2011 data
- Observed exclusion @ 95% CL:
 - ATLAS: 110-117.5, 118.5-122.5, 129-539 GeV
 - CMS: 127.5-600 GeV
- > Expected exclusion @ 95% CL:
 - ATLAS: 120-555 GeV
 - CMS: 114.5-543 GeV
- Significance of excess at low mass
 - ATLAS: local significance @ 126 GeV:
 2.5σ all channels (3.5σ for γγ + 4l)
 - CMS: local significance @ 125 GeV: 2.8σ
 - Significantly lower for both experiments once "look elsewhere effect" taken into account


As a final snapshot...

- > LHC sensitivity is driven by gg \rightarrow H \rightarrow VV and $\gamma\gamma$ final states in the Higgs mass region not yet excluded
- TeVatron analyses now focus on low mass region m_H< 135 GeV, concentrating on associated VH production with H → bb decays</p>





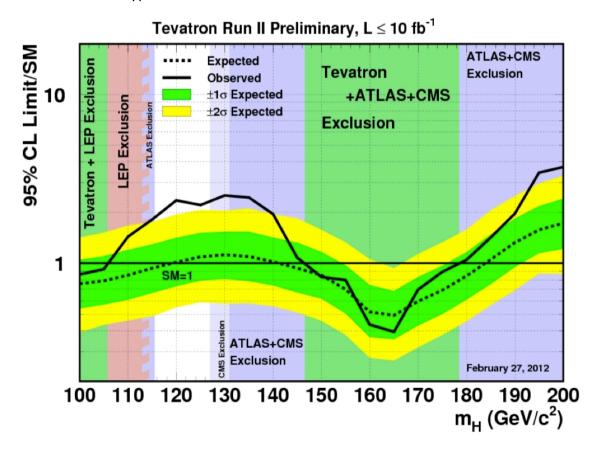
Analysis	s No. of Leptons Missing E _T ?		No. of b-Jets
$ZH ightarrow u ar{ u}$ -	$+bar{b}$ 0	Yes	2
$WH \rightarrow \ell \nu +$	$bar{b}$ 1	Yes	2
$ZH o \ell^+\ell^-$	$1+bar{b}$ 2	No	2

- > In addition to 20% more *cf* 2011 results, several analysis improvements
 - Triggers, improved analysis methods, relaxed cuts to increase signal acceptance, more sophisticated multivariate algorithms for S/B separation, improved b-tagging...

Improved techniques in the TeVatron Higgs searches

- D0 L_b BDT
 - Continuous output ranked into 12 operating points, based on purity

	New Tag Efficiency	Old Tag Efficiency
B-jets	50 – 70%	45 – 65 %
LF jets	0.5 - 4.5%	0.5 – 4.5 %

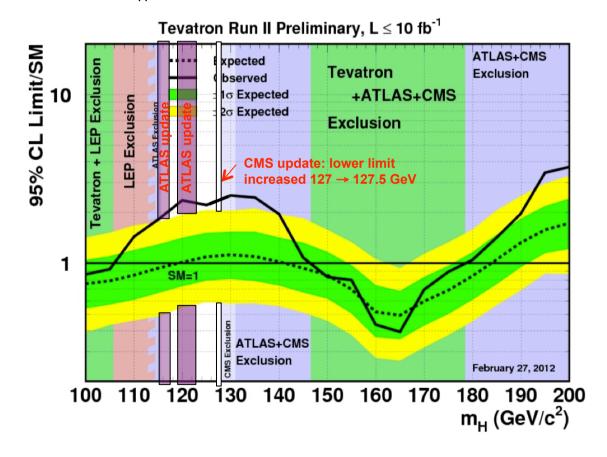

Summary of TeVatron Results.. and everyone else

> TeVatron exclusion:

Obs.: 100 < m_H < 106 GeV and 147 < m_H < 179 GeV

Exp.: 100 < m_H < 119 GeV and 141 < m_H < 184 GeV</p>

- Quantifying the TeVatron excess:
 - Broad region over that seen by the LHC experiments
 - Local significance 2.7σ
 - Global significance: 2.2σ

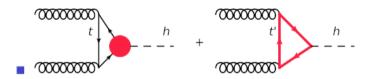

Summary of TeVatron Results.. and everyone else

> TeVatron exclusion:

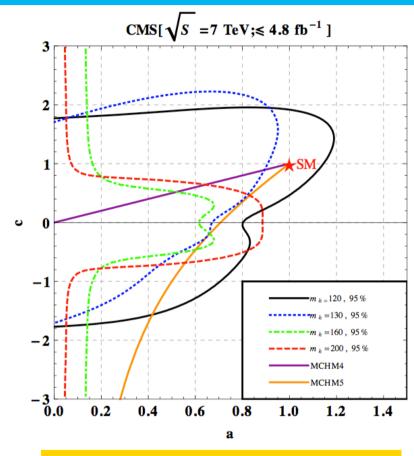
Obs.: 100 < m_H < 106 GeV and 147 < m_H < 179 GeV

Exp.: 100 < m_H < 119 GeV and 141 < m_H < 184 GeV</p>

- Quantifying the TeVatron excess:
 - Broad region over that seen by the LHC experiments
 - Local significance 2.7σ
 - Global significance: 2.2σ
- Regions <u>not</u> excluded by **any** experiment
 - 117.5 < m_H < 118.5 GeV
 - 122.5 < m_H < 127.5 GeV



On to the BSM Higgs

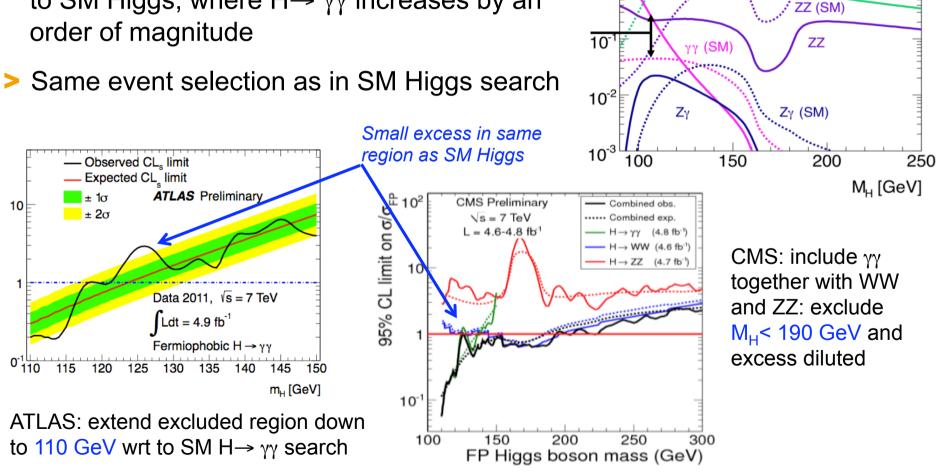

- Discussion of composite Higgs models in talk by Aleksandr
- Introduces mixing between the SM fermions and composite fermions + Higgs

New physics will unveil itself in the modification of the SM Higgs couplings

Two types of corrections: formfactor of the top Yukawa coupling, direct contribution form the composite top partners t'

More information in e.g. arXiv:1202.3415

> Results from ATLAS, CMS and TeVatron on several BSM Higgs models:

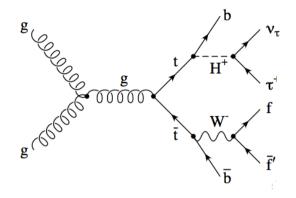

4th gen fermion Higgs couplings, Fermiophobic Higgs, Charged + Neutral Higgs in MSSM, doubly-charged Higgs, ...

WW (SM)

Fermiophobic

Searches for a fermiophobic Higgs

- > VBF or VH associated production only: ggH production forbidden
- > Remaining channels enhanced with respect to SM Higgs, where $H \rightarrow \gamma \gamma$ increases by an order of magnitude

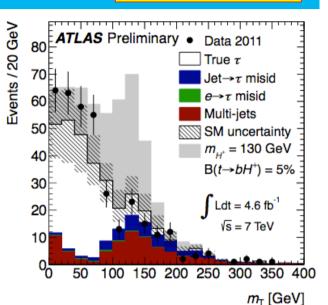


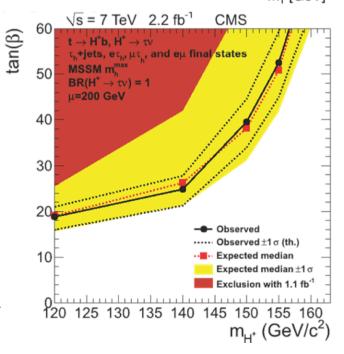
 $\sigma \times BR [pb]$

 $\sqrt{s} = 7 \text{TeV}$

Javier Fernandez Bruno Lenzi

Search for a charged Higgs

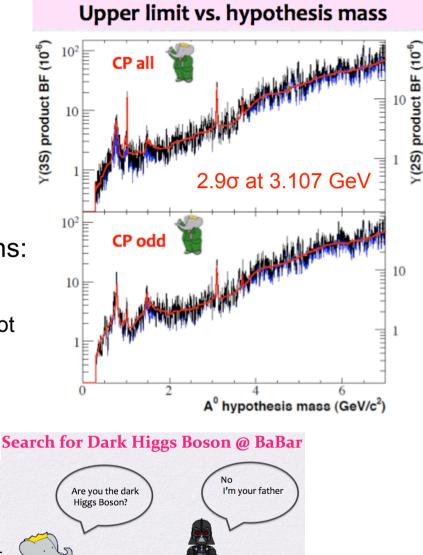

ATLAS: Hadronic tau decay + 4 jets


Sample	Event yield (τ+jets)		
True τ (embedding method)	$210 \pm 10 \pm 44$		
Misidentified jet $\rightarrow \tau$	$36 \pm 6 \pm 10$		
Misidentified $e \rightarrow \tau$	$3 \pm 1 \pm 1$		
Multi-jet processes	$74 \pm 3 \pm 47$		
∑ SM	$330 \pm 12 \pm 65$		
Data	355		
$t \rightarrow bH^+ (130 \text{ GeV})$	220 ± 6 ± 56		
Signal+background	$540 \pm 13 \pm 85$		

- Predicted by 2HDM (eg MSSM) and Higgs triplet models
 - For m_{H+} < m_t: dominant production in top quark decays
 - For tan β > 3, preferred decay, mode is H[±] $\rightarrow \tau^{\pm}\nu$
- No significant signal seen, derive limits on the branching ratio BR(t → H⁺b) < 2-3%</p>
 - Shown as a function of tan β for all final states combined from the CMS analysis
- → See also talk from Emilien Chapon on TeVatron

 BSM Higgs searches

 David South | Summary of the EW/Searches WG (Part

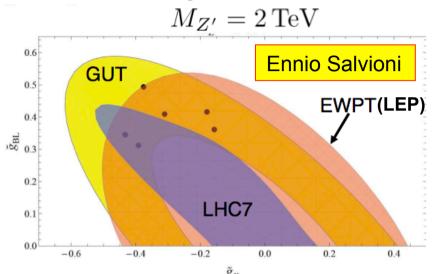

BaBar Higgs searches

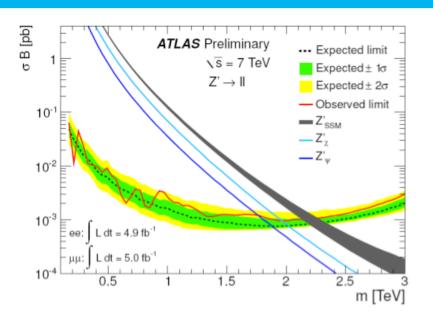
- ➤ Two searches for novel light Higgs performed at BaBar using their e⁺e⁻ collision data
- Light CP–odd Higgs can be directly produced in transition Y(nS) →γA⁰, where A⁰ decays to SM particles
- No significant signal seen for A⁰→hadrons: Upper limits are calculated at 90% CL
 - One of the most significant signals noted on plot

hadrons

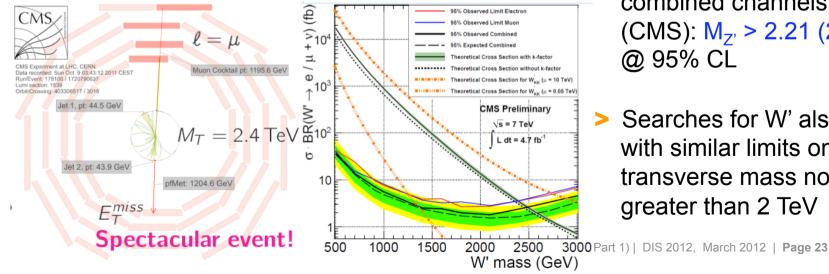
See Valentina's talk for details on the search for the dark Higgs and dark photons:

e

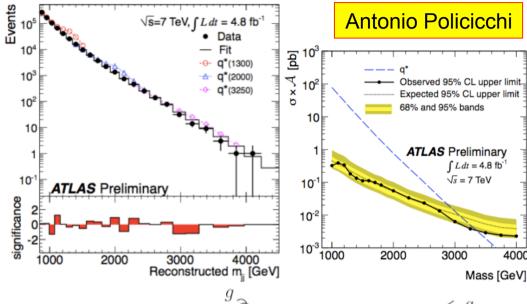


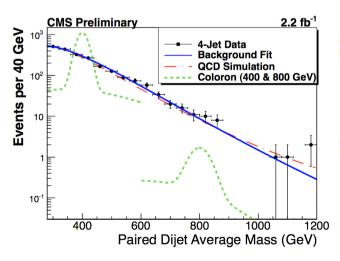

Moving on to exotic, non-SUSY searches

- Many non-SUSY searches going on, not just at the LHC or the TeVatron
- Some models discussed in the EW working group included:
 - New Z' and W' bosons, and other di-lepton resonances
 - Heavy neutrino + W_R production
 - Large extra dimensions
 - Narrow resonances in the 2 and 4 jet spectrum
 - Long live particles and heavy stable charged particles
 - Same sign leptons and black hole searches
 - Excited quarks and leptons
 - Leptoquarks and contact interactions
 - t-tbar and diboson resonances
 - Heavy quarks and 4th generation fermions ... and more !
- I pick out only a few today, and refer you to the talks in the Tuesday afternoon sessions for more results


Search for new vector bosons Z' and W'

Nice review of Z' and W' models, by Ennio, relating to current LHC results

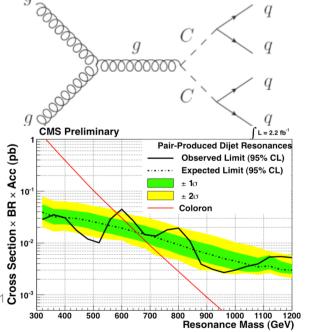

Di-lepton decay Z' search, combined channels: ATLAS (CMS): $M_{7'} > 2.21$ (2.32) TeV @ 95% CL



Searches for W' also have with similar limits on the transverse mass now greater than 2 TeV

Searches for narrow resonances in di-jet and 4-jet events

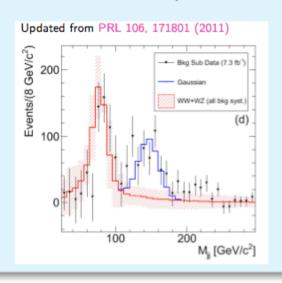
- Measured ATLAS di-jet mass spectrum and angular distributions consistent with QCD, no excess observed
- Set limits on a variety of models, including excited quark, where M_{q*} > 3.35 TeV



- Also look for 4-jet final states, and identify dijet pairs
- Search done by CMS, no excess observed, limits derived on Coloron production of 320 < M_C < 580 GeV

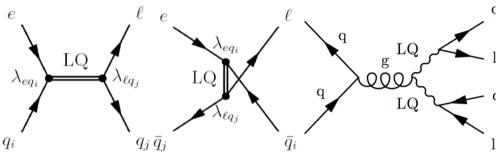
Martin Weber

David South | Summary of the EW/Searches WG (Part 1

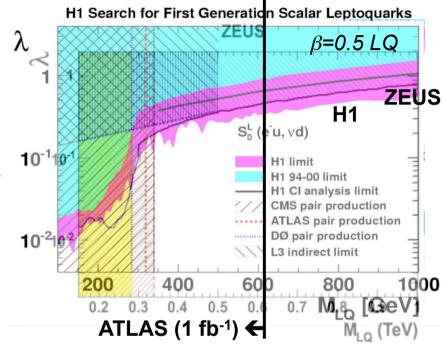


Di-jet mass spectrum of W + j j events

CDF $(7.3 \, \text{fb}^{-1}, 4.3 \, \text{fb}^{-1} \text{ published})$


- Data is 4.1 standard deviations from expectation.
- $\sigma \times \mathcal{B} = 3.1 \pm 0.8 \, \mathrm{pb}$

> CDF and DØ agree to disagree... CDF is performing several independent analyses with the full data set to make a final statement on the subject


Search for leptoquarks in ep and pp collisions

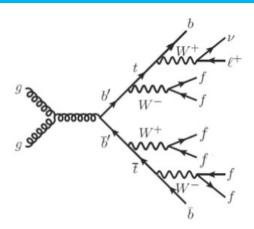
Complimentary searches from ep data at HERA and from hadron colliders

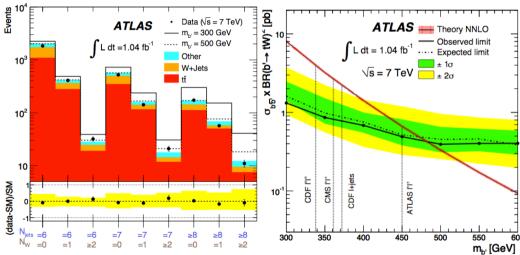
HERA limits from single LQ production strongly depend on the coupling, λ; pair-production at TeVatron / LHC

CMS Preliminary (\$=7 To	eV L dt = 1.8 fb ⁻¹
0.8	
0.7	
0.6	D0 exclusion (5.2 fb ⁻¹)
0.4	CMS 95% CL Limit (expected, 1.75 fb*)

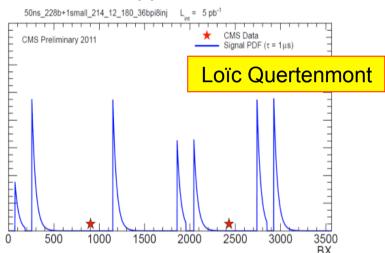
Scalar LQs	1st Gen		2nd Gen		3rd Gen	
β	1.0	0.5	1.0	0.5	1.0	0.5
ATLAS	660	607	685	595	-	
CMS	384	339	632	523	350	

First third generation LHC LQ search results from CMS


South | Summary of the EW/Searches WG (Part 1) | DIS 2012, March 2012

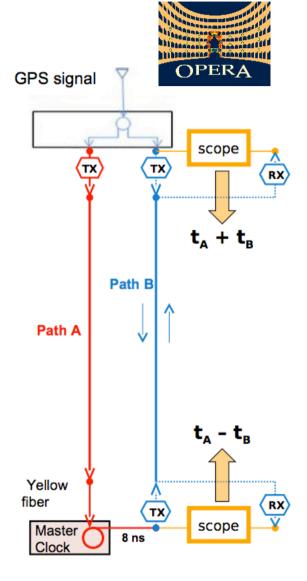

Stefano Antonelli Sushil Chauhan Hayk Pirumov Antonio Policicchi

4th Generation Fermions / Stopped Heavy Stable Charged Particles


Sushil Chauhan Jihang Zhong

Event topologies with one lepton and many jets from W decays

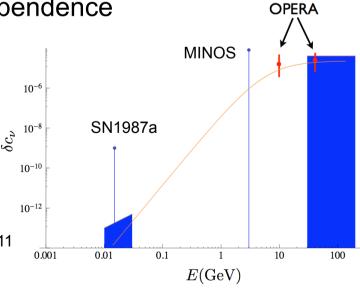
Limit @ 95% CL (assuming BR(b'->Wt)=1) of M_{b'} > 480 GeV (470 GeV expected) Search for long lived particles stopped in CMS detector, by looking at decays triggered during time intervals when there were no pp collisions


- > For lifetimes from 10µs to 1000s:
- M_{gluino}-M_{neutralino} > 100 GeV and Br(gluino → g + neutralino) =100%: M_{gluino} < 601 GeV @ 95% CL
- M_{stop}-M_{neutralino} > 200 GeV and Br(stop → top + neutralino) =100%:
- > M_{stop} < 337 GeV @ 95% CL

Measurement of the neutrino velocity with the OPERA detector in the CNGS beam Torben Ferber

- > Primary goal of the experiment: $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations
- Sep 2011: After taking into account known delays, two methods revealed time discrepancy of ~ 55 ns
- Nov 2011: Data from bunched beam running reveals consistent delay of ~ 62 ns
- Dec 2011-Feb 2012: two issues identified: oscillator used to produce the events time and connection of the optical fibre
- March 28th: Preliminary correction to the bunched beam data results in δt = (-1.7+/-3.7) ns (stat. only), under the assumption that the two issues were stable during the bunched beam run (assumption motivated by a LVD-OPERA collaboration using cosmic muons): New bunch beam data in May will confirm.

For the very latest: http://agenda.infn.it/conferenceDisplay.py?confld=4896


Violation of causality and the end of Special Relativity: hard to construct a theory.. but what about breaking Lorentz Invariance?

- > Species dependent velocities, δc_a $\mathcal{L} = \bar{\psi}_a [i\gamma^0 D_0 + i c_a \gamma^i D_i m_a] \psi_a + \dots$
 - Photon velocity normalised to 1
 - Theoretical background: As a consequence of the (yet unknown) theory of quantum gravity (space-time foam, gravity with anisotropic scaling, ...)

- > Direct limits on $|\delta c_{\nu}|$ suggest an energy dependence
- Strong limits of other species
 - proton: $|\delta c_p| < 10^{-22} (CMB)$
 - electron: $|\delta c_e| < 10^{-15}$ (LEP, Crab Nebula)
 - muon: $-\delta c_{\mu} < 10^{-11}$ (Crab Nebula)
- > Lorentz Violation in neutrinos allowed, but not more than four orders of magnitude: $|\delta c_v| < 10^{-11}$

Summary of Part 1

- > Full and comprehensive programme of searches in HEP
 - Some TeVatron analysis utilising compete data sets, more to come
 - Impressive number of 5 fb⁻¹ LHC analyses, only a few months after data taken
- The SM Higgs still eludes discovery but for how much longer?
 - Running out of places to hide: 117.5 < m_H < 118.5 GeV and 122.5 < m_H < 127.5 GeV</p>
 - The LHC should give us the answer in 2012
- > A few 2-3 sigma effects turning up in a few analyses..
 - We all look forward to the coming 8 TeV LHC data for clarification
 - → First collisions today !