First measurement of σ_{tot} and σ_{el} expectations for 2011/12

LHCC
21 Sept 2011

Karsten Eggert
on behalf of the TOTEM Collaboration
Elastic scattering differential cross-section

$\beta^* = 3.5 \text{ m, Oct. 2010}$ (EPL 95 2011, 41001)

Extend the measurement to lower $|t|$ values
Total Cross-Section Measurement

Optical Theorem:

\[
\sigma_{TOT}^2 = \frac{16\pi(\hbar c)^2}{1 + \rho^2} \cdot \left. \frac{d\sigma_{EL}}{dt} \right|_{t=0}
\]

Use \(\rho\) from COMPETE fit:

\(\rho = 0.14^{+0.01}_{-0.08}\)

Normalisation with luminosity from CMS

Uncertainty \(\pm 4\%\)

\[
\frac{d\sigma_{EL}}{dt} = \frac{1}{L} \cdot \frac{dN_{EL}}{dt}
\]

\(\Rightarrow\) Measure \(d\sigma_{el} / dt\) at lowest possible \(|t|\)
First run with the $\beta^* = 90 \text{ m}$ optics and RP insertion

- Two bunches with 1 and 2×10^{10} protons / bunch
- Instantaneous luminosity: $8 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-1}$
- Integrated luminosity: 1.7 μb$^{-1}$
- Estimated pile-up: $\sim 0.5 \%$
- Vertical Roman Pots at 10 σ from beam center
- Trigger rate: $\sim 50 \text{ Hz}$
- Recorded events in vertical Roman Pots: 66950

Un-squeeze from injection optics
$\beta^* = 11 \text{m} \text{ to } 90 \text{m}$
[Helmut Burkhardt, Andre Verdier]

Very robust optics with high precision
Proton tracks of a single diagonal (left-right coincidences)

\[\beta^* = 3.5 \text{ m} \]

\[\beta^* = 90 \text{ m} \]

Sector 45

\[x = L_x \Theta_x + \xi D + v_x x^* \]
\[y = L_y \Theta_y + v_y y^* \]
\[L_x \sim 0 \]

Sector 56

\[t = -p^2 \theta^2 \]
\[\xi = \Delta p/p \]

Integrated luminosity: 6.2 nbarn\(^{-1}\)

Inel. pile-up \(\sim 0.8 \text{ ev/bx} \)

Integrated luminosity: 1.65 \(\mu \text{barn}^{-1} \)

Inel. pile-up \(\sim 0.005 \text{ ev/bx} \)
Angular Correlations between outgoing protons

- Background negligible $< 1\%$
- Width of correlation band in agreement with beam divergence ($\sim 2.4 \, \mu\text{rad}$)

$L_y \sim 260 \, \text{m}$

$L_x \sim 0 - 3 \, \text{m}$
Angular difference between the two outgoing protons

\[
\frac{[\Theta_y^* (\text{proton1}) - \Theta_y^* (\text{proton2})]}{\sqrt{2}}
\]

beam divergence \(\sigma_{\Theta^*}\)

\[
\sigma_{\Theta^*} = \sqrt{\frac{\varepsilon_n}{\gamma \beta^*}} = 2.4 \mu\text{rad}
\]
Optics, t-scale and acceptance

- Perturbations: optics very robust ($L_y \sim s_{RP}$), better than:
 - $\delta \Theta_x^*/\Theta_x^* = 1.3\%_{syst}$
 - $\delta \Theta_y^*/\Theta_y^* = 0.4\%_{syst}$
- Non-linearities in $\Theta_x^*(y)$ reconstruction due to dL_x/ds fixed: (checked via L_x)
- t systematics: $\delta t/t = 0.8\%$ (low t) up to 2.6\% (large $|t|$)
- Acceptance correction factor < 3 at low $|t|$, based on ϕ symmetry
Comparison of the two diagonals

Acceptance corrected
Efficiency Correction and Resolution Unfolding

Trigger efficiency \(\sim 99.9\% \)
Reconstruction efficiency \(\sim 91\% \)

\[\sigma\left(\Theta_x^*\right) = \sqrt{1.7^2 \text{ (from beam div.)} + 4^2 \text{ (det. res.)}} = 4.4 \mu\text{rad} \]

\[\sigma\left(\Theta_y^*\right) = 1.7 \mu\text{rad} \text{ (from beam div.)} \]

Unfolding correction

Effect on slope: \(\Delta B = 0.11 \text{ GeV}^{-2} \)
Final Differential Cross-Section

Extrapolation to $t = 0$:

$$\frac{d\sigma}{dt} \bigg|_{t=0} = 5.037 \times 10^2 \text{mb/GeV}^2$$

Exponential slope

$$B \bigg|_{t=0} = 20.1 \text{GeV}^{-2}$$

Good agreement with the measurement at $|t| > 0.36 \text{GeV}^2$

[EPL 95 (2011) 41001]

Total elastic cross-section:

$$\sigma_{EL} = 8.3 \text{mb}^{(\text{extrapol})} + 16.5 \text{mb}^{(\text{measured})} = 24.8 \text{mb}$$
Systematics and Statistics

- **t**: \(\pm [0.6 \div 1.8]\% \text{syst optics} \pm <1\% \text{align.} \pm [3.4 \div 11.9]\% \text{stat} \) (before unfolding)
- **d\sigma/dt**: \(\pm 4\% \text{syst lumin} \pm 1\% \text{syst (acc.+eff.+backg.+tag)} \pm 0.7\% \text{syst unfold.} \)
- **B**: \(\pm 1\% \text{stat} \pm 1\% \text{syst from } t \pm 0.7\% \text{syst from unfolding} \)
- **d\sigma/dt(t=0)**: \(\pm 0.3\% \text{stat} \pm 0.3\% \text{syst (optics)} \pm 4\% \text{syst lumin} \pm 1\% \text{syst (acc.+eff.+backg.+tag)} \)
- **\(\int d\sigma/dt \, dt $$\)**: \(\pm 4\% \text{syst lumin} \pm 1\% \text{syst (acc.+eff.+backg.+tag)} \pm 0.8\% \text{stat extrap.} \)

- **\(\sigma_{\text{TOT}} $$**: \((+0.8\% ; -0.2\%) \text{syst } \rho \pm 0.2\% \text{stat} \pm 2.7\% \text{syst} \\
 = (+2.8\% ; -2.7\%) \text{syst } \pm 0.2\% \text{stat} \)
- **\(\sigma_{\text{EL}} $$**: \(\pm 5\% \text{syst} \pm 0.8\% \text{stat} \)
- **\(\sigma_{\text{INEL}} $$**: \((+2.4\% ; -1.8\%) \text{syst } \pm 0.8\% \text{stat} \)
Results

Elastic exponential slope:

\[B_{t=0} = (20.1 \pm 0.2^{(\text{stat})} \pm 0.3^{(\text{syst})}) \text{ GeV}^{-2} \]

Elastic diff. cross-section at optical point:

\[\left. \frac{d\sigma_{el}}{dt} \right|_{t=0} = (503.7 \pm 1.5^{(\text{stat})} \pm 26.7^{(\text{syst})}) \text{ mb/GeV}^2 \]

Optical Theorem, \(\rho = 0.14^{+0.01}_{-0.08} \)

\[
\sigma_T = \left(98.3 \pm 0.2^{(\text{stat})} \pm 2.7^{(\text{syst})} \left[+0.8 \right]^{(\text{syst from } \rho)} \right) \text{ mb}
\]

\[
\sigma_{el} = 8.3 \text{ mb}^{(\text{extrapol.})} + 16.5 \text{ mb}^{(\text{measured})} = \left(24.8 \pm 0.2^{(\text{stat})} \pm 2.8^{(\text{syst})} \right) \text{ mb}
\]

\[
\sigma_{inel} = \sigma_{tot} - \sigma_{el} = \left(73.5 \pm 0.6^{(\text{stat})} \left[+1.8 \right]^{(\text{syst})} \right) \text{ mb}
\]

\[
\sigma_{inel}^{(\text{CMS})} = (68.0 \pm 2.0^{(\text{syst})} \pm 2.4^{(\text{lumi})} \pm 4.0 \text{ (extrap)}) \text{ mb}
\]

\[
\sigma_{inel}^{(\text{ATLAS})} = (69.4 \pm 2.4^{(\text{exp})} \pm 6.9 \text{ (extrap)}) \text{ mb}
\]
Energy dependence of the exponential slope B
Energy dependence of the elastic and total cross-sections

- σ_{tot}
- σ_{el}

- \sqrt{s} (GeV)

- Best COMPETE σ_{tot} fits
- Parabolic σ_{el} fit

- PP
- p̅p
- TOTEM
Energy dependence of inelastic cross-sections

\(\sigma_{\text{tot}} \) (red), \(\sigma_{\text{inel}} \) (blue) and \(\sigma_{\text{el}} \) (green)

- \(\bar{p}p \) (PDG)
- \(pp \) (PDG)
- Auger + Glauber
- ATLAS
- CMS
- TOTEM

best COMPETE \(\sigma_{\text{tot}} \) fits
parabolic \(\sigma_{\text{el}} \) fit

\(\sigma_{\text{tot}} \), \(\sigma_{\text{inel}} \), and \(\sigma_{\text{el}} \) (mb)

\(\sqrt{s} \) (GeV)
Running Strategy for 2011/12

RP alignment was performed at $\beta^* = 1.5$ m by approaching the RP detectors to the sharp beam edges produced by the LHC collimators. Qualification for running at $\beta^* = 1$ m, obtained via loss maps.

$\beta^* = 90$ m

29. June: machine test run and first RP insertion to 10σ using alignment at $\beta^* = 1.5$ m
 30 min of data taking \Rightarrow first measurement of σ_{tot}

August: alignment of all vertical RPs, beam lost before hor. Alignment
 No data taking

Plan for end of September:
 5 hours data taking at 5σ (vertical RP) \Rightarrow luminosity independent measurement

Horizontal alignment

October: at least one more run with 147 m alignment \Rightarrow diffraction

2012:

Toward larger $\beta^* \sim 1$ km
Acknowledgements

Thanks to:

The LHC crew
 for giving us such a beautiful machine
 for supporting continuously our TOTEM requests

The physics coordinator Massi Ferro-Luzzi
 for his help in critical situations and not forgetting us

The Optics group
 for the development of the magic 90m optics

The CMS collaboration
 For the friendly collaboration and the luminosity measurement

All our friends, funding agencies and the CERN management