Status of "Upgrade-proposal" document

Target Dates

20.06.2011:Outline and list of figures(DONE)27.06.2011:Draft 0 (abstract for all sections)(DONE)15.07.2011:Draft 1 (draft version of text)(DONE)

16.09.2011: Draft 2 (polished text + figures) -> distribute to ITS coll. (In Progress)

< 03.10.2011: Comments by ITS collaboration

10.10.2011: Draft 3 with comments from ITS -> distribute to ALICE

< 31.10.2011: Comments from ALICE

2.5 months ago, there was no document, now we have a draft for most chapters ...

Unfortunately, we had to give up our original target dates → they were moved by 3 weeks ...

More details ...

1 Introduction	Colorcoding GREEN "Polished" by the chapter editors BLUE Complete Draft version RED Incomplete Draft or empty	7 Pages	90%
1.1 Introduction			90%
1.2 Current detector performance and limitations			90%
1.3 Motivations for upgrading			90%
1.4 Experimental cond	ditions		90%

→ Will be reviewed once the other chapters are complete

2 Physics Motivation 37 Pages	
2.1 Current experimental situation in heavy-ion collisions and impact of the ITS upgrade	
·····	
2.2 Physics performance studies for the ITS upgrade	49%
2.2.1 Simulation methods	90%
2.2.2 D0 meson reconstruction as a benchmark for detector performance	90%
2.2.3 Charm baryons (Lambdac)	90%
2.2.4 B mesons at central rapidity	40%
2.2.5 Heavy flavour physics performance	10%
2.2.6 Long range correlations	10%
2.2.7 Competitiveness	10%

 \rightarrow We are sill missing major parts in section 2.2 ...

More details ...

Colorcoding
GREEN ... "Polished" by the chapter editors
BLUE ... Complete Draft version
RED ... Incomplete Draft or empty

3 Detector Functional Requirements	55 Pages	78%
3.1 Introduction		100%
3.2 General Design Considerations		100%
3.3 Simulation tools and procedures		90%
3.4 Detector parameters		90%
3.5 Impact parameter resolution		100%
3.6 Tracking performance (efficiency and resolution)		100%
3.7 PID performance		90%
3.8 Trigger capabilities		5%
3.9 Readout rate capabilities		5%
3.10 Radiation environment		90%
3.11 Redundancy		90%

→ Good progress but ongoing discussion regarding efficiencies for the different scenarios ...

More details ...

4 Detector Technical Implementation	37 Pages	100%
4.1 Introduction		100%
4.2 Technology Options for Pixel Detectors		100%
4.3 Technology Options for Strip Detector		100%
4.4 Readout and control electronics		100%
4.5 Irradiation Plans		100%
4.6 Testbeam Plans		100%
5 Mechanics, Services and Integration	41 Pages	83%
5.1 Introduction and System Overview		100%
5.2 Conceptual design integration and mechanics		90%
5.3 Cooling studies, R&D and prototyping		100%
5.4 Beam pipe design		100%
5.5 Detector and beam-pipe installation 5.6 Services		100% 10%
5.6 Services		10%
6 Cost Estimate, Time Schedule and Participating Institutes	1 Page	0%
6.0 Empty emptiness		0%

Excellent progress here, chap.6 will be written at the very end ...

09/12/11 St. Rossegger

Conclusion

- Unfortunately, we had to extend the deadlines by three weeks
- READINESS OF THE DOCUMENT -> ~ 70 %

(to be compared to 41% from our last plenary session)

• For the document to be ready for comments, we should aim for the full 100% so that people do not comment on text which will be changed later on ...

