Studies on B→J/psi Carmelo Di Giglio University of Bari & INFN

B from dislaced J/psi: status

• Section completed, figures included:

– Current ITS:

- Pseudo-proper decay length resolution
- Current ALICE performance for the non prompt to prompt J/psi ratio measurement using the likelihood fit approach
- Uprade ITS:
 - Pseudo-proper decay length resolution obtained with NewSPD/AllNew configuration.
 - resolution function RMS vs. J/psi minimum pT compared against the current ITS configuration.
 - ALICE performance plot for the non prompt to prompt J/psi ratio measurement using likelihood fit. The statistics assumed for B→J/psi event is the one expected in a realistic PbPb data taking scenario using an EMCAL trigger for electron pairs

B from dislaced J/psi: current vs. upgrade

- $B \rightarrow J/\psi$ analysis requirements:
 - Increase statistical significance → we need a proper trigger for electrons
 - Keep J/ ψ transverse momentum reach reasonably low, i.e ~ 1.3-1.5 GeV/c (p_T(B) \rightarrow 0)

- Trigger scheme: 2 possible scenarios
 - Actual: use of EMCAL (+TRD) in pp and PbPb collisions \rightarrow trigger on single/double electrons
 - Future: use of a topological trigger with ITS
 - Both of them need quantitative study and optimization: some quantitative estimations for the EMCAL trigger have been discussed.

1st scenario: EMCAL trigger

- Current status: rare triggers runs since 2 June (→ see F.Antinori, PF 15/06/2011):
 - 100 kHz interaction rate, ~ 30 Hz EMCAL L0 (momentum threshold = 4.8 GeV on single track) + mix of other rare triggers.
- Low $p_T(J/\psi)$ reach requirement \rightarrow need to go below 4 GeV on single electron momentum threshold with EMCAL. At least a 2-2.5 GeV transverse momentum cut for single electrons and 1.7-2 GeV for electron pairs should be used.
- <u>single electron trigger</u> with EMCAL <u>not feasible</u> for $B \rightarrow J/psi$ studies in PbPb ($\sqrt{sNN} = 5.5TeV$ min. bias):
 - Assuming a 2 GeV cut on single electrons and 8kHz interaction rate $\rightarrow \sim 500$ Hz for events with a single electron in the EMCAL acceptance which can be triggered at L0
- <u>double electrons trigger</u> with EMCAL <u>more promising</u> for $B \rightarrow J/psi$ studies in PbPb ($\sqrt{sNN} = 5.5$ TeV min. bias):
 - Analogous calculations gives \rightarrow \sim 15 Hz for events with at least 2 electrons in the EMCAL acceptance
 - Main problem: low efficiency for pT(J/psi) down to 1.3-1.7 GeV

B→J/psi performance plot

- ITS upgrade (NewAll conf.)
- In √sNN = 5.5TeV PbPb MB, ~4500 B→J/psi→ee expected in the EMCAL acceptance using a double electron trigger (roughly assuming ~ 50% trigger efficiency and ~50% tracking efficiency for the pair.)

 Realistic PbPb data taking scenario is assumed, i.e: 3 weeks of data taking (30% of total time with stable beams, ~10 % of total time dedicated to rare triggers) with a conservative interaction rate ~500-1000Hz.

2nd scenario: topological trigger with ITS

- Possible scheme for $B \rightarrow J/\psi(\rightarrow ee)$ analysis:
 - L2 trigger
 - build J/ ψ candidate in ITS applying invariant mass constraints
 - look at corresponding tracks in TRD which:
 - Are compatible with two electrons
 - Point back to a secondary vertex far away from the interaction vertex
 - Cut on the impact parameter/pseudoproper-decay-length ($c\tau(B) \sim 500 \mu m$)
- Advantage is the rejection of the component from prompt J/ψ
 - Needs a rethinking of the analysis