ITS Upgrade meeting 12-09-2011

Status of Λ_c section in C.D.R.

2.2.3 Charm baryons: $\Lambda_c \to pK\pi$ as a benchmark case

Authors: M. Mager, C. Terrevoli

The physics motivation for the measurement if charm baryon production was discussed in Sec. ??. The most promising measurement is the decay of the Λ_c^+ into three charged prongs $(p, K^-, \text{ and } \pi^+)$ with a BR of 5.0% [?].

In order to identify the decay vertex, a very high resolution is of need, owing to the short mean proper decay length of the Λ_c , $c\tau \approx 60 \ \mu m$ [?]. Therefore an improvement of the resolution would allow a much cleaner separation of its decay point (the secondary vertex) from the interaction point (primary vertex) with respect the current ITS, as it is seen in Fig. 2.20.

Figure 2.20: Distribution of the residuals between the reconstructed and generated position of $\Lambda_c \to pK\pi$ decay vertices in the plane transverse to the beam line, for the present (left) and upgrade (right) ITS scenarios.

Invariant Mass's studies

- mention to cut's optimization
- signal in pp: ITS upgrade performances and scaling of the signal to calculate the significance
 Significance = signal/√(signal + background)

From the proposal:

This distribution has been scaled to the same statistics of the data sample ($N_{exp} = 1.9 \times 10^8$ events) because of the lower statistics of the Monte Carlo sample analyzed with the Hybrid Method ($N_{MC} = 1.3 \times 10^8$).For the background the scaling factor is

$$S_B = N_{data} / N_{MC}$$
.

For the signal an additional small correction has been added to take into account the number of $c\overline{c}$ per event in the analyzed MC sample $(N_{MC}^{c\overline{c}}/event = 0.11)$.

$$S_{signal} = (N_{data}/N_{MC}) \cdot (N^{c\overline{c}}/event)/(N^{c\overline{c}}_{MC}/event).$$

• The final number of the significance is 12.5 in the p_t > 3GeV/c while the current value is 5 \rightarrow

 comparison between current and upgrade ITS performances in the same pt bin (p_t>3GeV/c)

Fig. 1. – Left: Invariant mass spectrum $M[pK\pi]$ in p-p collisions at 7 TeV for $p_T > 3GeV/c^2$ in data. Right: The invariant mass spectrum obtained with the ITS Upgrade in $AllNew - 0.3 - 4\mu\%$ configuration.

INVARIANT MASS DISTRIBUTION IN PbPb

- No signal in data with the current ITS in any pt bin
- The signal is seen in the invariant mass distribution with the ITS Upgrade in an "enriched in charm" PbPb sample

Fig. 2. – Invariant mass spectrum $M[pK\pi]$ with ITS Upgrade in Pb–Pb MC. Λ_c candidates with $p_t > 4GeV/c$ are considered

INVARIANT MASS DISTRIBUTION IN PbPb: issues in analysis cuts

SCALING the Signal and the background

• Signal: S'=A*S S= 255 (from the previous plot: entries under the peak) A= (Nevent_{Data}/N_{MC analyzed})* (N_{ccbar expected}/N_{ccbarMC})*B.R.(Lc-> π Kp)*fy where:

Nevent_{Data} = PbPb data in one month of data taking in a year :

~ 10^7 events in 0-5% centrality (ref. PPR)
~ 10^8 Minimum Bias (i.e. 0-100%)

- N_{ccbar expected}: (per event) from PPR -> 115 ccbar in 0-5% centrality at 5.5 TeV

 \rightarrow N_{ccbar expected} in 0-100%= 25.3 (0.22 scaling factor due to the centrality)

- \blacktriangleright N_{ccbarMC}: counted in the analyzed sample per event in 0-100% = 13
- ➢ B.R.= 5%

 \blacktriangleright fy = fraction of ccbar in which at least one is in |y| < 1.5 with the decay forced (the sample is enriched in 20% of ccbar with this condition) \rightarrow fy = 0.7

• Background: B' = E^{currITS}*B^{UP}

► E^{currITS}=bkgDATA/bkgMC

✓ bkgDATA= background/event from **Current ITS** in data

✓ bkgMC = background/event from **Current ITS** in a minimum bias MC sample

 \succ B^{UP}= (B_{MinBias} Upgrade /N_{MC analyzed})*N_{eventData}

✓ B_{MinBias}^{Upgrade} = background/event from **ITS UPGADE** in a minimum bias MC sample

\rightarrow Significance = 9.7 in pt>4GeV/c (0-100%centrality)

INVARIANT MASS DISTRIBUTION IN PbPb: final result

Fig. 2. – Invariant mass spectrum $M[pK\pi]$ with ITS Upgrade in Pb–Pb MC. Λ_c candidates with $p_t > 4GeV/c$ are considered in the centrality range (0-100%)

What next:

> present cuts are optimized for the ITSUpgrade in all the pt bins:

no signal is found at low pt (pt<4 GeV/c)

trying to optimize cuts at lower pt (i.e. for instance for 2<pt<3)</p>