WG4 – Progress report

R. Santoro and A. Tauro

Outline

- Status of CDR Chapter V
- Contents overview

5	Mee	chanics	s, Services and Integration	1
	5.1	Introd	uction and System Overview	1
• •		5.1.1	ALICE layout and ITS accessibility	1
		5.1.2	Upgrade requirements	4
	5.2	Conce	ptual design, integration and mechanics	5
		5.2.1	Option 1: SPD upgrade	5
••)		5.2.2	Option 2: ITS upgrade	9
		5.2.3	Muon Forward Tracker	9
	5.3	Coolin	Ig studies, $R\&D$ and prototyping $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	10
		5.3.1	Air cooling	10
••		5.3.2	Liquid cooling with carbon foam structure	15
		5.3.3	Liquid cooling with polyimide micro-channels structure	18
		5.3.4	Evaporative cooling with silicon micro-channels structure	24
	5.4	Beam	pipe design \ldots	28
		5.4.1	Length and wall thickness	28
••)		5.4.2	Diameter	28
		5.4.3	Deformation	30
	5.5	Detect	tor and beam-pipe installation	31
		5.5.1	Installation of the new beam-pipe	32
••		5.5.2	Installation of the new pixel detector	35
		5.5.3	Installation of the new strip detector	35
		5.5.4	Alignment and spatial mapping	39
	5.6	Service	es	39
		5.6.1	Power distribution	40
0 0		5.6.2	Data links (optical fibers and cables)	40
		5.6.3	Cooling lines	40

Upgrade requirements:

Parameters: Option 1					
Beam pipe radius	mm	20 (outer radius)			
Number of pixel layers		3			
Mean radial positions	mm	22, 47, 90			
Stave length	mm	210, 270, 370			
Power consumption	W/cm ²	0.3 – 0.5			
Total material budget per layer	X/X_{0} (%)	≤0.5			
Working temperature	°C	≤35			
Temperature gradient	°C	≤5			
Maximum deformation	μm	Few microns			

Parameters: Option 2		Pixel	Pixel – strip
Number of pixel layers		3	4
Mean radial positions	mm	22, 38, 68	124, 235, 396, 430
Stave length	mm	210, 250, 320	450, 670, 1070, 1140
Power consumption	W/cm ²	0.3 – 0.5	
Total material budget per layer	$X/X_{0}(\%)$	≤ 0.5	≤1
Working temperature	°C	≤ 35	
Temperature gradient	°C	≤ 5	-
Maximum deformation	μm	Few microns	

Stave material budget

Component	Material budget X/X0 (%)	Notes
Support Structure	0.07 - 0.34	3 different structures are under discussion: carbon foam, polyimide and silicon
Glue	0.045	2 layers of glue 100 µm thick each
Pixel module	0.053 - 0.16	Monolythic (50 µm thick) – hybrid (150 µm thick)
Flex bus	1.5	Reasonable value if a singel layer flex bus is considered
Total	0.32 - 0.7	

Flex bus Pixel module Glue Support structure Wire bonding

Sketch of building blocks constituting a generic stave

Support Structure	Material budget X/X0 (%)	Notes
Carbon foam structure	0.22 - 0.34	Different cooling tubes: PEEK or Metal (MP35N)
Polyimide micro-channel structure	0.085 - 0.13	Different coolant: H20 or C6F14
Silicon micro- channel structure	0.07 - 0.11	Different layout: sideline or distributed micro-channels

D

Conceptual Design: Option 1

- ▶ 3 layers of SI-pixel sensors: 1st layer at 23 mm from the IP
- Full structure divided in 2 half, to be mounted around the beam pipe and to be moved along the beam pipe towards the final position
- Modules fixed to the 2 carbon fiber wheels
- All the services on side A
- Number of staves per layer: 12, 24, 46

Constrains:

- Stave 15mm wide
- 2 mm dead area on one side
- Full azimuthally coverage
- Closest point to the beam pipe: 22.5mm (2 mm of clearance)
- 2 mm of clearance between neighboring staves

Conceptual Design: Option 2

- 3-pixel layers are based on the same structure shown before
- 4 strip layers, based on 2 separate barrels, each one supporting two detector layers
- Three tubes in carbon composite or beryllium are permanently fixed between the 2 barrels both to rigidify the structure and to support guide the inner barrel insertion
- Three tubes in carbon composite or beryllium are permanently fixed in the inner surface of the TPC to support - guide the 4layer barrel insertion
- 4-layer structure mounted outside the TPC before it is moved in the final position
- The 3-pixel layer insertion has to be studied

3-pixel layer insertion

R. Santoro

4-laver

mechanical

7

Cut view of the Installed ITS

Air cooling

Preliminary considerations on air cooling, based on simplified calculation

- Assumptions
 - Air flowing along the tubes with no air leakage
 - ▶ 3 cylinders with the pixel structure dimension
 - Power uniformly distributed along the surfaces (0.3 or 0.5 W/cm²)
 - Air inlet 7° C and sensor limit = 35° C

Considerations

- Those are only preliminary studies which show that we need very low power consumption to cool down the detector with reasonable air flow (less than 10 m/s)
 - Simulations could be started if power consumption lower than 0.3 W/cm² is feasible
 - STAR uses ≈ 10 m/s with a power consumption of ≈ 0.17 W/cm²
- If air cooling will be considered, the mechanic design should be similar to the actual mechanics
- The services needed to force the air could add material budget at forward rapidity on A side

$$\begin{split} q/2 &= h(T_s - T_a) \\ q &= 0.3 W/cm^2 \Rightarrow h \approx 50 W m^{-2} K^{-1} \\ q &= 0.5 W/cm^2 \Rightarrow h \approx 90 W m^{-2} K^{-1} \end{split}$$

Carbon foam structure

Preliminary simulations with resonable velues of material conductivity and thickness. In these studies we assume surfaces with ideal contact

- Power consumption 0.5 W/cm2
- Cooling with water in leakless
- Inlet temperature = 18° C and flow rate 0.3 lit/min
- ▶ Glue conductivity 1 W/mK (100µm thick)
- Carbon foam conductivity 50 W/mK (1mm thick)

Polyimide micro-channel

Fabrication process

- Starting point: 1 layer of LF110 (50 µm thick) and 1 layer of PC1020 (50 µm thick)
- Grooves obtained with photolithography
- Cover lay hot pressed on the top and final cure @ 180°C for 10 Hours

Simulation and tests on prototype based on micro-channels 200 x 800 μm^2

R. Santoro

- Tests on prototypes:
- Leak test and water compatibility (ok)
- Thermo fluid dynamic test (soon)
- Mechanical test (soon)

Simulated temperature distribution: polyimide surface and side view with 0.5 W/cm2

Si-Micro-channel

- Micro-channels made on etched silicon plates covered with Si-plate by fusion bonding
- Two layouts are under discussion
 - Distributed micro-channels: material budget equally distributed below the sensitive area
 - Sideline micro-channels: micro-channels confined at the chip's border

Further considerations

- This is actually an option considered for the NA62 Experiment at CERN
- Suitable with double-phases cooling (C02 or fluorocarbons)
 - Simulation and R&D are needed
- Limitation: the standard process is actually 4" wafer although CEA-LETI is trying to manufacture 8" silicon wafer

Cross section image of silicon microchannels 200 x 200 µm²

-

Sideline micro-channels

Beam pipe considerations

- The beampipe is actually hold in 3 points (FMD2, FMD3 and service support wheels)
- To permit the insertion of the ITS from the A side, the central support has to be removed
- The sagitta of a beampipe 5m long with the wall 800µm thick has been studied
 - The sagitta can be reduced applying a moment along the beam axis on one end (8Nm)
 - Almost the same result has been calculated with a thinner wall (500µm)
- Discussions to have a beam pipe with the inner radius of about 19mm are on-going
- Beam pipe with 500µm wall seems to be feasible although R&D is needed
 - The worry is the "porosity" and the vacuum tightness
 - Prototypes are needed

