

BHSE at ILC - revisited

S. Lukić - HEP Group Vinča FCAL Workshop, September 2011

Summary

- BHSE at ILC analyzed using:
 - BHLUMI v4.04 Bhabha event generator
 - Guinea-PIG v1.2 (adapted by C. Rimbault) to simulate beam-beam effects on Bhabha pairs.
- Comparison with previous results
- Beam-beam effects on bhabha angular and energy distribution analyzed in order to propose selection cuts that effectively minimize BHSE

Cross-check with the 2007 results

- Reproduction of the results by C. Rimbault et al, JINST 2 (2007)
 - Lumical geometrical angular acceptance [26,82] mrad
 - Fiducial volume [30,75] mrad

Cross-check

- Basic cuts -

- Basic cuts: Both particles inside the fiducial volume, both E_e , $E_p > 0.8$ E_{beam}
- Fine-tuning of the GP parameters (number of macroparticles, beam energy spread etc.) causes a variation of ± 0.2 % in the final BHSE

	C. Rimbault et al.	This work
Beamstrahlung	-3.78(4)	-3.91(4)
EM deflection	-0.65(2)	-0.62(2)
Total	-4.41(5)	-4.53(4)

Cross-check

- Improved cuts -

- Improved cuts:
 - One particle inside the fiducial volume, the other particle inside the geometrical acceptance (Angular range partly outside the FV → systematic uncertainty in the BHSE)
 - Random choice which cut is applied on which side
 - $E_e + E_p > 0.8 E_{CM}$

	C. Rimbault et al.	This work	
Beamstrahlung	-1.03(4)	-0.98(4)	
EM deflection	-0.48(2)	-0.46(1)	
Total	-1.51(5)	-1.45(4)	

Selection cuts for background suppression [1]

Legend:

- AA is the angular part of the improved cuts by C. Rimbault
- E_{rel} means: $E_e + E_p > 0.8 E_{CM}$
- E_{bal} means: $(E_e E_p) < 0.1 \min(E_e, E_p)$
- " $\Delta \varphi$ " means: $\Delta \varphi < 5^{\circ}$ (coplanarity)
- " $\Delta\theta$ " means: $\Delta\theta$ < 0.06°

Algorithm	B/S[1]	BS BHSE	EM defl. BHSE	total BHSE	Rel. sel. eff.
		(%)	(%)	(%)	(%)
$\overline{AA + E_{rel}}$	3.7×10^{-3}	-0.98 ± 0.04	-0.46 ± 0.01	-1.45 ± 0.04	66.2
$AA + E_{rel} + \Delta \phi$	2.9×10^{-3}	-1.00 ± 0.04	-0.45 ± 0.01	-1.45 ± 0.04	65.4
$AA + E_{bal} + \Delta \phi$	2.2×10^{-3}	-5.80 ± 0.07	-1.25 ± 0.03	-7.04 ± 0.07	51.0
$\Delta\theta + E_{rel} + \Delta\phi$	2.6×10^{-3}	-19.64 ± 0.08	-0.145 ± 0.011	-19.79 ± 0.08	67.3
$\Delta\theta + E_{bal} + \Delta\phi$	1.6×10^{-3}	-19.62 ± 0.08	-1.12 ± 0.02	-20.75 ± 0.08	61.2

[1] M. Pandurović, Fon u merenju luminoznosti i razvoj metode za identifikaciju b-kvarka u eksperimentima ILC i H1, Ph.D. thesis, Univerzitet u Beogradu (2011)

Rel. selection efficiency is defined rel. to the LumiCal geometrical acceptance [26,82] mrad

Cuts optimization

Energy cuts – relative energy

 $(E_e + E_p) > 0.8 E_{CM}$

C. Rimbault et al, JINST 2 (2007)

Cuts optimization Angular cuts

• Anticorrelated shift in θ_e , θ_p due to the asymmetric energy loss in Beamstrahlung (CM gains impulse in z-direction)

Cuts optimization

- Most Bhabha

 10 3 events that
 migrate outside
 of the fiducial
- 10 ² volume start out near the edges.

10
$$\theta_e$$
, $\theta_p \approx \theta_{min}$
 θ_e , $\theta_p \approx \theta_{max}$

1

Cuts optimization

E_{rel} + "dented" FV

- Present LumiCal geometry (FV = [41,67] mrad)
- BHSE can be reduced to zero. For $\delta\theta$ = 2.8 mrad, total BHSE = (0.005 ± 0.059) %
- Efficiency relative to the geom. acceptance [31,78] mrad

Sensitivity to σ_X

Collinearity and coplanarity

Δθ:

$$\Delta \theta = \theta_{e^{-}} - \theta_{e^{+}} < (\Delta \theta)_{max}$$

Coplanarity:

$$\Delta \varphi = \varphi_{e^{-}} - \varphi_{e^{+}} < (\Delta \varphi)_{max}$$

• Collinearity:

$$\Delta \varphi < (\Delta \varphi)_{max} \wedge \Delta \theta < (\Delta \theta)_{max}$$

Collinearity

- *E_{rel}* + "dented" fiducial volume
- $\Delta \varphi < 5^{\circ}$

Comparison 500 GeV – 1 TeV

• E_{sum} + "dented" selection cuts

CLIC 3 TeV

- BHSE 71 % (E_{rel} + fiducial volume, simulated with Gaussian beams) difficult to reduce to zero
- Needs to be more reliably estimated and corrected

Conclusions

- BHSE can be completely eliminated at ILC using suitable selection algorithms
- A range of parameters can be simultaneously manipulated to optimize BHSE and the background suppression
 - $\delta\theta$ (for the "dented" angular cuts)
 - $\Delta\theta$ (polar angle tolerance)
 - $\Delta \varphi$ (coplanarity tolerance, limited by the resolution in φ)
 - Energy cuts
- BHSE at CLIC is more dramatic it has to be precisely estimated and corrected

Outlook

- Reevaluate the data-driven BHSE correction method (luminosity spectrum) for the present selection cuts.
- Include a simulation of the interaction with the detector (Barbie or similar)
 - Test the $\delta\theta$ extension of the angular criteria outside of the fiducial volume taking care of the influence of the partial deposition on the energy cuts
- Verify how these cuts affect the background suppression (M. Pandurović)

Thank you!

Additional slides

Cuts optimization

• Energy cuts – Energy balance $(E_e - E_p) < 0.1 \min(E_e, E_p)$

E_{balance} + "dented" FV

• BHSE \approx 0 for $\delta\theta$ = 2.15 mrad

