The GB formulation of QFTs and the Unruh Effect

Ralf Banisch, wip with F. Hellmann and D. Raetzel

10. Oktober 2011

Motivation: The Unruh Effect.

In the 60ies, Unruh et.al. discovered that the vacuum state in a QFT is observer-dependent. They found: A uniformly accelerated observer travelling through Minkowski Vacuum sees particles.

Pragmatic definition for this talk

A QFT is in the *vacuum state* for the observer \mathcal{O} if a detector travelling on the worldline of the observer sees no particles.

Consider an initial observer \mathcal{O}_1 and a uniformly accelerated observer \mathcal{O}_2 in Minkowski space. Say the QFT is in the vacuum state for \mathcal{O}_1 . The Unruh effect states that \mathcal{O}_2 will detect particles.

Motivation: The Unruh Effect.

In the 60ies, Unruh et.al. discovered that the vacuum state in a QFT is observer-dependent. They found: A uniformly accelerated observer travelling through Minkowski Vacuum sees particles.

Pragmatic definition for this talk

A QFT is in the *vacuum state* for the observer \mathcal{O} if a detector travelling on the worldline of the observer sees no particles.

Consider an initial observer \mathcal{O}_1 and a uniformly accelerated observer \mathcal{O}_2 in Minkowski space. Say the QFT is in the vacuum state for \mathcal{O}_1 . The Unruh effect states that \mathcal{O}_2 will detect particles.

Motivation: The Unruh Effect II

- Unruh effect only calculated for very special situations: Scalar Field Theory, 1+1 dimensional spacetime, uniformly accelerated (Rindler-) observer.
- What about observers on arbitrary worldlines?
- What about higher dimensions?
- Idea: Look at a more general reformulation of QFT: The general boundary formulation (GBF). Ask what it can predict about the Unruh Effect!

Table of Contents

- 1 Unruh Effect
- 2 The GB formulation
- 3 GBF and the Unruh Effect
- **4** Conclusion

An Example: Quantum Mechanics I

- In standard QM, a Hilbert space \mathcal{H}_t is associated to each time slice Σ_t of a global foliation of spacetime.
- More explicitly, we have Hilbert spaces H₁ and H₂ associated to the initial time t₁ and final time t₂. Evolution is described by a unitary operator U(t₁, t₂): H₁ → H₂.
- The transition amplitude for an initial state $|\psi_1\rangle \in \mathcal{H}_1$ to evolve into a final state $\langle \psi_2 | \in \mathcal{H}_2^*$ is written as $\langle \psi_2 | U(t_1, t_2) | \psi_1 \rangle$.

An Example: Quantum Mechanics II

- Idea: Forget about the distinction between initial and final state!
- Consider the generalized state space $\mathcal{H}_{[t_1,t_2]}=\mathcal{H}_1\otimes\mathcal{H}_2^*$. The transition amplitude is then a map $\rho_{[t_1,t_2]}:\mathcal{H}_{[t_1,t_2]}\to\mathbb{C}$ given by:

$$\rho_{[t_1,t_2]}(\psi_1\otimes\psi_2)=\langle\psi_2|U(t_1,t_2)|\psi_1\rangle$$

An Examle: Quantum Mechanics III

- More generally, consider an arbitrary M with $\Sigma = \partial M$, assign a state space \mathcal{H}_{Σ} to the boundary and encode the dynamics completely in the amplitude $\rho_M: \mathcal{H}_{\Sigma} \to \mathbb{C}$.
- If $\Sigma = \Sigma_1 \cup \overline{\Sigma}_2$, then require $\mathcal{H}_{\Sigma} = \mathcal{H}_{\Sigma_1} \otimes \mathcal{H}_{\Sigma_2}^*$. Then, any amplitude map $\rho_M: \mathcal{H}_1 \otimes \mathcal{H}_2^* \to \mathbb{C}$ induces a map $T_M: \mathcal{H}_{\Sigma_1} \to \mathcal{H}_{\Sigma_2}$.

GBF and the Unruh Effect

• A composition property is needed: If M is obtained by gluing M_1 and M_2 along Σ , we need $T_M = T_{M_2} \circ T_{M_1}$.

An Examle: Quantum Mechanics III

- More generally, consider an arbitrary M with $\Sigma = \partial M$, assign a state space \mathcal{H}_{Σ} to the boundary and encode the dynamics completely in the amplitude $\rho_M: \mathcal{H}_{\Sigma} \to \mathbb{C}$.
- If $\Sigma = \Sigma_1 \cup \bar{\Sigma}_2$, then require $\mathcal{H}_{\Sigma} = \mathcal{H}_{\Sigma_1} \otimes \mathcal{H}_{\Sigma_2}^*$. Then, any amplitude map $\rho_M : \mathcal{H}_1 \otimes \mathcal{H}_2^* \to \mathbb{C}$ induces a map $T_M : \mathcal{H}_{\Sigma_1} \to \mathcal{H}_{\Sigma_2}$.
- A composition property is needed: If M is obtained by gluing M₁ and M₂ along Σ, we need T_M = T_{M2} ∘ T_{M1}.

Axiomatic Setup for the GBF

We want to generalize this to a general boundary formulation for Quantum Field Theories. The following axioms have to hold [Oeckl 03'-10']:

- For every hypersurface Σ there is a complex separable Hilbert space \mathcal{H}_{Σ} with inner product $\langle \cdot, \cdot \rangle_{\Sigma}$, the *state space*.
- If $\bar{\Sigma}$ is Σ with reversed orientation, then $\mathcal{H}_{\bar{\Sigma}} = \mathcal{H}_{\Sigma}^*$.
- If $\Sigma = \Sigma_1 \cup \ldots \cup \Sigma_m$, then $\mathcal{H}_{\Sigma} = \mathcal{H}_{\Sigma_1} \otimes \ldots \otimes \mathcal{H}_{\Sigma_m}$.
- Associated with each region M there is a linear map $\rho_M : \mathcal{H}_{\partial M}^{\circ} \to \mathbb{C}$ where $\mathcal{H}_{\partial M}^{\circ}$ is dense in $\mathcal{H}_{\partial M}$, the amplitude map.
- Gluing property: If M is obtained by gluing M_1 and M_2 along Σ and T_M , T_{M_1} and T_{M_2} are the induced maps from ρ_M , ρ_{M_1} and ρ_{M_2} , then $T_M = T_{M_2} \circ T_{M_1}$.

Axiomatic Setup for the GBF

We want to generalize this to a general boundary formulation for Quantum Field Theories. The following axioms have to hold [Oeckl 03'-10']:

- For every hypersurface Σ there is a complex separable Hilbert space \mathcal{H}_{Σ} with inner product $\langle \cdot, \cdot \rangle_{\Sigma}$, the *state space*.
- If $\bar{\Sigma}$ is Σ with reversed orientation, then $\mathcal{H}_{\bar{\Sigma}} = \mathcal{H}_{\Sigma}^*$.
- If $\Sigma = \Sigma_1 \cup \ldots \cup \Sigma_m$, then $\mathcal{H}_{\Sigma} = \mathcal{H}_{\Sigma_1} \otimes \ldots \otimes \mathcal{H}_{\Sigma_m}$.
- Associated with each region M there is a linear map $\rho_M : \mathcal{H}_{\partial M}^{\circ} \to \mathbb{C}$ where $\mathcal{H}_{\partial M}^{\circ}$ is dense in $\mathcal{H}_{\partial M}$, the amplitude map.
- Gluing property: If M is obtained by gluing M_1 and M_2 along Σ and T_M , T_{M_1} and T_{M_2} are the induced maps from ρ_M , ρ_{M_1} and ρ_{M_2} , then $T_M = T_{M_2} \circ T_{M_1}$.

Construction of \mathcal{H}_{Σ}

We wish to construct the state space $\mathcal{H}_{\Sigma}.$ A Quantization prescription is needed! KG theory review:

- Consider $\Sigma = \Sigma_1 \cup \bar{\Sigma}_2$ with $\Sigma_{1/2}$ Cauchy. Then $\mathcal{H}_{\Sigma} = \mathcal{H}_{\Sigma_1} \otimes \mathcal{H}_{\Sigma_2}^*$. We wish to construct $\mathcal{H}_{\Sigma_{1/2}}$.
- First consider the space of Classical Solutions L_{Σ1} to the KG-equation on Σ₁. That is, all real linear combinations of plane waves e^{±i(Et-kx)}.
- Next, find the positive frequency plane waves! Those are e^{i(Et-kx)}.
 Write

$$\phi(x,t) = \int dk \left(\phi(k) e^{-i(Et-kx)} + \overline{\phi(k)} e^{i(Et-kx)} \right)$$

• Replace $\phi(k) \to a_k$ and $\overline{\phi(k)} = a_k^{\dagger}$ to obtain $\hat{\phi}$ as an operator on $\mathcal{H}_{\Sigma} \approx L^2(L_{\Sigma})$.

Positive Frequency, what's that?

How do you find the positive frequency plane waves?

- If M is Minkowski and Σ a Cauchy hypersurface, there is a nowhere vanishing timelike KVF ∂_t (the normal direction to Σ).
- The object $J=rac{\partial_t}{\sqrt{-\partial_t^2}}$ acts on plane waves as

$$Je^{i(Et-kx)} = ie^{i(Et-kx)}, \quad Je^{-i(Et-kx)} = -ie^{-i(Et-kx)}.$$

Thus positive frequency plane waves = eigenvectors of J with eigenvalue +i.

• J is what is called a *complex structure*: $J: L_{\Sigma} \to L_{\Sigma}$ is linear and $J^2 = -id_{\Sigma}$.

Geometric Quantization

• Given a hypersurface Σ and an action functional $S(\phi)$, consider the space L_{Σ} of classical solutions near that hypersurface.

GBF and the Unruh Effect

- L_{Σ} comes equipped with a natural symplectic structure $\omega_{\Sigma} = ddS_{\Sigma}$.
- Choose a complex structure $J: L_{\Sigma} \to L_{\Sigma}$ compatible with ω_{Σ} . That is, J linear, $J^2 = -id_{\Sigma}$ and $g(\cdot, \cdot) = \omega(\cdot, J(\cdot))$ is a positive definite symmetric bilinear form.
- Then the complex inner product

$$\{\phi,\eta\}_{\Sigma} := g_{\Sigma}(\phi,\eta) + 2i\omega_{\Sigma}(\phi,\eta)$$

turns L_{Σ} into a complex Hilbert space, the *one-particle H-space*.

• There is a unique Gaussian translation invariant measure μ_{Σ} allowing us to define $\mathcal{H}_{\Sigma} = L^2_{Hol}(L_{\Sigma}, \mu_{\Sigma})$ with inner product

$$\langle \psi, \psi' \rangle_{\Sigma} = \int_{L_{\Sigma}} \psi(\phi) \overline{\psi'(\phi)} \exp\left(-\frac{1}{2} g_{\Sigma}(\phi, \phi)\right) d\mu(\phi)$$

Vacuum and Coherent States

The coherent state $K_{\xi} \in \mathcal{H}_{\Sigma}$ corresponding to $\xi \in \mathcal{L}_{\Sigma}$ is given by

$$\mathcal{K}_{\xi}(\phi) := \exp\left(rac{1}{2}\{\xi,\phi\}_{\Sigma}
ight) \quad orall \phi \in \mathcal{L}_{\Sigma}.$$

For each hypersurface Σ , we require the existence of a vacuum state $\psi_{\Sigma,0}\in\mathcal{H}_{\Sigma}$ satisfying a number of axioms, most notably

$$\rho_M(\psi_{\partial M,0}) = 1$$
 for any region M .

It turns out that a preferred (but not the only) choice for a vacuum state is $\psi_{\Sigma,0}=\mathcal{K}_0=\mathbf{1}_{L_\Sigma}$ for $0\in L_\Sigma$.

Discussion

- completely covariant
- problem of time disappears
- technically involved
- Everything dependent on the choice of complex structure J
- Where does J come from? Existence and Uniqueness is the main question in geometric quantization!

The Ashtekar-Magnon Condition

Condition by A.Ashtekar and A. Magnon on the choice of J for spacelike Σ [80ies]:

AM-condition

There is a unique complex structure J_{Σ} on Σ such that $\langle \phi | H | \phi \rangle = \int_{\Sigma} d\Sigma_a T_{ab} t^a n^b$ for all $\phi \in (L_{\Sigma}, \{\cdot, \cdot\})$.

In 1+1 dimensions, it can be shown that there always is a global orthogonal coordinate system (x,τ) such that $\tau=const$ on Σ and $J_{\Sigma}=\frac{\partial_{\tau}}{\sqrt{-\partial_{\tau}^{2}}}$.

$$au = const$$

GBF and the Unruh effect?

- The Unruh effect tells us that the vacuum in a QFT is observer-dependent.
- The GB formulation of QFT tells us how QFT effects can be observed on different hypersurfaces.
- In 1+1 dimensions,

worldlines of observers = hypersurfaces!

- Central Question: Does GBF allow to model observer-dependent phenomena? At least in 1+1 dimensions?
- Arena: Massless scalar field theory in 1+1 Minkowski spacetime.
 Conformal Invariance!

A word about detector models

We model a particle detector as a two level system: $|0\rangle$ ground state, $|1\rangle$ excited state, energies 0 and w. The detector is coupled to the scalar field via

$$H_{int} = c\chi(\tau)\mu(\tau)\phi(x(\tau))$$

where $\chi(\tau)$ is a switching function, $\mu(\tau)$ is the monopole moment and $x(\tau)$ the position of the detector at proper time τ .

If the field ϕ is in the state $|A\rangle$, then in first order perturbation theory the detection probability is

$$P(w) = c^2 |\langle 0|\mu(0)|1\rangle|^2 F(w)$$

with the response function

$$F(w) = \int_{-\infty}^{\infty} d\tau' \int_{-\infty}^{\infty} d\tau'' e^{-iw(\tau' - \tau'')} \chi(\tau') \chi(\tau'') \langle A | \phi(x(\tau')) \phi(x(\tau'')) | A \rangle.$$

Vacua

Consider a detector \mathcal{O} with worldline Σ in 1+1 Minkowski space where a massless scalar matter field is present. Two different notions of vacuum:

- ullet The QFT is in the vacuum state for ${\cal O}$ if the detection rate is zero ('no-click condition')
- Pick a complex structure J_Σ and use geometric quantization to construct H_Σ. Then there is a unique vacuum state K₀(J_Σ) ∈ H_Σ.

Question: For which choice of J_{Σ} are these notions compatible?

Conjecture

There is (exactly) one complex structure J_{Σ} such that the corresponding vacuum state $K_0(J_{\Sigma})$ satisfies the no-click condition, namely the one satisfying the Ashtekar-Magnon condition!

Remark: Σ is timelike. However, massless scalar field theory in 1+1 is symmetric under $(t,x) \leftrightarrow (x,t)$.

Vacua

Consider a detector $\mathcal O$ with worldline Σ in 1+1 Minkowski space where a massless scalar matter field is present. Two different notions of vacuum:

- ullet The QFT is in the vacuum state for ${\cal O}$ if the detection rate is zero ('no-click condition')
- Pick a complex structure J_Σ and use geometric quantization to construct H_Σ. Then there is a unique vacuum state K₀(J_Σ) ∈ H_Σ.

Question: For which choice of J_{Σ} are these notions compatible?

Conjecture

There is (exactly) one complex structure J_{Σ} such that the corresponding vacuum state $K_0(J_{\Sigma})$ satisfies the no-click condition, namely the one satisfying the Ashtekar-Magnon condition!

Remark: Σ is timelike. However, massless scalar field theory in 1+1 is symmetric under $(t, x) \leftrightarrow (x, t)$.

Hypersurfaces, hypersurfaces

- consider a region M bounded by two detector worldlines Σ_1 and Σ_2 .
- inertial detector on worldline Σ_1 , accelerated detector on worldline Σ_2 . We can choose J_1 on Σ_1 and J_2 on Σ_2 according to the AM condition. This will give AM vacua $|0_1\rangle \in \mathcal{H}_{\Sigma_1}$ and $|0_2\rangle \in \mathcal{H}_{\Sigma_2}$.
- But these are not dynamically consistent! Consider the evolution map $T:\mathcal{H}_{\Sigma_1} \to \mathcal{H}_{\Sigma_2}$. In general, $|0_2\rangle \neq T|0_1\rangle$, and $TJ_{\Sigma_1}T^{-1} \neq J_{\Sigma_2}$. One detector must violate 'no-click'!

Conclusion

- The General Boundary Formulation provides a framework for QFTs with data prepared on arbitrary hypersurfaces.
- Quantization is ambiguous. One has to choose a compatible complex structure J_{Σ} on at least one hypersurface Σ , which can then be propagated with the time evolution map.
- We propose to fix this ambiguity by imposing the (rotated) AM-condition on one hypersurface Σ . This gives rise to a unique vacuum state K_0 on Σ .
- We conjecture that in 1+1 dimensions, a detector travelling along Σ will not click if and only if the QFT is in the state K_0 .
- The Unruh effect arises in the sense that for an initial and an accelerated worldline, the AM-condition cannot be realised simultaneously in a dynamically consistent way.

Outlook

- We hope to prove our conjecture!
- Dynamical inconsistency argument is conceptually clear, but a fully explicit calculation is still missing.
- What about higher dimensions? Additional complications arise.