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Motivation: The Unruh Effect.

In the 60ies, Unruh et.al. discovered that the vacuum state in a
QFT is observer-dependent. They found: A uniformly accelerated
observer travelling through Minkowski Vacuum sees particles.

Pragmatic definition for this talk

A QFT is in the vacuum state for the observer O if a detector
travelling on the worldline of the observer sees no particles.

Consider an initial observer O1 and a uniformly accelerated
observer O2 in Minkowski space. Say the QFT is in the vacuum
state for O1. The Unruh effect states that O2 will detect particles.
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Motivation: The Unruh Effect II

• Unruh effect only calculated for very special situations: Scalar Field
Theory, 1+1 dimensional spacetime, uniformly accelerated
(Rindler-) observer.

• What about observers on arbitrary worldlines?

• What about higher dimensions?

• Idea: Look at a more general reformulation of QFT: The general
boundary formulation (GBF). Ask what it can predict about the
Unruh Effect!
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An Example: Quantum Mechanics I
• In standard QM, a Hilbert space Ht is associated to each time slice

Σt of a global foliation of spacetime.
• More explicitly, we have Hilbert spaces H1 and H2 associated to the

initial time t1 and final time t2. Evolution is described by a unitary
operator U(t1, t2) : H1 → H2.

• The transition amplitude for an initial state |ψ1〉 ∈ H1 to evolve
into a final state 〈ψ2| ∈ H∗2 is written as 〈ψ2|U(t1, t2)|ψ1〉.

Σ1

Σ2

H1

H2

U(t1, t2)
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An Example: Quantum Mechanics II

• Idea: Forget about the distinction between initial and final state!

• Consider the generalized state space H[t1,t2] = H1 ⊗H∗2 . The
transition amplitude is then a map ρ[t1,t2] : H[t1,t2] → C given by:

ρ[t1,t2](ψ1 ⊗ ψ2) = 〈ψ2|U(t1, t2)|ψ1〉

Σ

H1

H[t1,t2] Σ1

Σ2

H2
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An Examle: Quantum Mechanics III
• More generally, consider an arbitrary M with Σ = ∂M, assign a

state space HΣ to the boundary and encode the dynamics
completely in the amplitude ρM : HΣ → C.

• If Σ = Σ1∪ Σ̄2, then require HΣ = HΣ1 ⊗H∗Σ2
. Then, any amplitude

map ρM : H1 ⊗H∗2 → C induces a map TM : HΣ1 → HΣ2 .
• A composition property is needed: If M is obtained by gluing M1

and M2 along Σ, we need TM = TM2 ◦ TM1 .

Σ2
Σ1

Σ

M1
M2

M
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Axiomatic Setup for the GBF

We want to generalize this to a general boundary formulation for
Quantum Field Theories. The following axioms have to hold [Oeckl
03’-10’]:

• For every hypersurface Σ there is a complex separable Hilbert space
HΣ with inner product 〈·, ·〉Σ, the state space.

• If Σ̄ is Σ with reversed orientation, then HΣ̄ = H∗Σ.

• If Σ = Σ1 ∪ . . . ∪ Σm, then HΣ = HΣ1 ⊗ . . .⊗HΣm .

• Associated with each region M there is a linear map ρM : H◦∂M → C
where H◦∂M is dense in H∂M , the amplitude map.

• Gluing property: If M is obtained by gluing M1 and M2 along Σ and
TM , TM1 and TM2 are the induced maps from ρM , ρM1 and ρM2 ,
then TM = TM2 ◦ TM1 .
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Construction of HΣ

We wish to construct the state space HΣ. A Quantization prescription is
needed! KG theory review:

• Consider Σ = Σ1 ∪ Σ̄2 with Σ1/2 Cauchy. Then HΣ = HΣ1 ⊗H∗Σ2
.

We wish to construct HΣ1/2
.

• First consider the space of Classical Solutions LΣ1 to the
KG-equation on Σ1. That is, all real linear combinations of plane
waves e±i(Et−kx).

• Next, find the positive frequency plane waves! Those are e i(Et−kx).
Write

φ(x , t) =

∫
dk
(
φ(k)e−i(Et−kx) + φ(k)e i(Et−kx)

)
• Replace φ(k)→ ak and φ(k) = a†k to obtain φ̂ as an operator on
HΣ ≈ L2(LΣ).
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Positive Frequency, what’s that?
How do you find the positive frequency plane waves?

• If M is Minkowski and Σ a Cauchy hypersurface, there is a nowhere
vanishing timelike KVF ∂t (the normal direction to Σ).

• The object J = ∂t√
−∂2

t

acts on plane waves as

Je i(Et−kx) = ie i(Et−kx), Je−i(Et−kx) = −ie−i(Et−kx).

Thus positive frequency plane waves = eigenvectors of J with
eigenvalue +i .

• J is what is called a complex structure: J : LΣ → LΣ is linear and
J2 = −idΣ.

Σ∂t
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Geometric Quantization

• Given a hypersurface Σ and an action functional S(φ), consider the
space LΣ of classical solutions near that hypersurface.

• LΣ comes equipped with a natural symplectic structure ωΣ = ddSΣ.

• Choose a complex structure J : LΣ → LΣ compatible with ωΣ. That
is, J linear, J2 = −idΣ and g(·, ·) = ω(·, J(·)) is a positive definite
symmetric bilinear form.

• Then the complex inner product

{φ, η}Σ := gΣ(φ, η) + 2iωΣ(φ, η)

turns LΣ into a complex Hilbert space, the one-particle H-space.

• There is a unique Gaussian translation invariant measure µΣ

allowing us to define HΣ = L2
Hol(LΣ, µΣ) with inner product

〈ψ,ψ′〉Σ =

∫
LΣ

ψ(φ)ψ′(φ) exp

(
−1

2
gΣ(φ, φ)

)
dµ(φ)
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Vacuum and Coherent States

The coherent state Kξ ∈ HΣ corresponding to ξ ∈ LΣ is given by

Kξ(φ) := exp

(
1

2
{ξ, φ}Σ

)
∀φ ∈ LΣ.

For each hypersurface Σ, we require the existence of a vacuum state
ψΣ,0 ∈ HΣ satisfying a number of axioms, most notably

ρM(ψ∂M,0) = 1 for any region M.

It turns out that a preferred (but not the only) choice for a vacuum state
is ψΣ,0 = K0 = 1LΣ

for 0 ∈ LΣ.
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Discussion

• completely covariant

• problem of time disappears

• technically involved

• Everything dependent on the choice of complex structure J

• Where does J come from? Existence and Uniqueness is the
main question in geometric quantization!
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The Ashtekar-Magnon Condition

Condition by A.Ashtekar and A. Magnon on the choice of J for spacelike
Σ [80ies]:

AM-condition

There is a unique complex structure JΣ on Σ such that
〈φ|H|φ〉 =

∫
Σ
dΣaTabt

anb for all φ ∈ (LΣ, {·, ·}).

In 1+1 dimensions, it can be shown that there always is a global
orthogonal coordinate system (x , τ) such that τ = const on Σ and
JΣ = ∂τ√

−∂2
τ

.

Σ

T |01〉

τ = const

∂τ
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GBF and the Unruh effect?

• The Unruh effect tells us that the vacuum in a QFT is
observer-dependent.

• The GB formulation of QFT tells us how QFT effects can be
observed on different hypersurfaces.

• In 1+1 dimensions,

worldlines of observers = hypersurfaces!

• Central Question: Does GBF allow to model observer-dependent
phenomena? At least in 1+1 dimensions?

• Arena: Massless scalar field theory in 1+1 Minkowski spacetime.
Conformal Invariance!
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A word about detector models
We model a particle detector as a two level system: |0〉 ground state, |1〉
excited state, energies 0 and w . The detector is coupled to the scalar
field via

Hint = cχ(τ)µ(τ)φ(x(τ))

where χ(τ) is a switching function, µ(τ) is the monopole moment and
x(τ) the position of the detector at proper time τ .
If the field φ is in the state |A〉, then in first order perturbation theory the
detection probability is

P(w) = c2|〈0|µ(0)|1〉|2F (w)

with the response function

F (w) =

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′e−iw(τ ′−τ ′′)χ(τ ′)χ(τ ′′)〈A|φ(x(τ ′))φ(x(τ ′′))|A〉.
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Vacua
Consider a detector O with worldline Σ in 1+1 Minkowski space where a
massless scalar matter field is present. Two different notions of vacuum:

• The QFT is in the vacuum state for O if the detection rate is zero
(’no-click condition’)

• Pick a complex structure JΣ and use geometric quantization to
construct HΣ. Then there is a unique vacuum state K0(JΣ) ∈ HΣ.

Question: For which choice of JΣ are these notions compatible?

Conjecture

There is (exactly) one complex structure JΣ such that the corresponding
vacuum state K0(JΣ) satisfies the no-click condition, namely the one
satisfying the Ashtekar-Magnon condition!

Remark: Σ is timelike. However, massless scalar field theory in 1+1 is

symmetric under (t, x)↔ (x , t).
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Hypersurfaces, hypersurfaces

• consider a region M bounded by two detector worldlines Σ1 and Σ2.

• inertial detector on worldline Σ1, accelerated detector on worldline
Σ2. We can choose J1 on Σ1 and J2 on Σ2 according to the AM
condition. This will give AM vacua |01〉 ∈ HΣ1 and |02〉 ∈ HΣ2 .

• But these are not dynamically consistent! Consider the evolution
map T : HΣ1 → HΣ2 . In general, |02〉 6= T |01〉, and
TJΣ1T

−1 6= JΣ2 . One detector must violate ’no-click’ !

Σ1 Σ2

J1, |01〉

=⇒
T

J2, |02〉
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Conclusion

• The General Boundary Formulation provides a framework for QFTs
with data prepared on arbitrary hypersurfaces.

• Quantization is ambiguous. One has to choose a compatible
complex structure JΣ on at least one hypersurface Σ, which can
then be propagated with the time evolution map.

• We propose to fix this ambiguity by imposing the (rotated)
AM-condition on one hypersurface Σ. This gives rise to a unique
vacuum state K0 on Σ.

• We conjecture that in 1+1 dimensions, a detector travelling along Σ
will not click if and only if the QFT is in the state K0.

• The Unruh effect arises in the sense that for an initial and an
accelerated worldline, the AM-condition cannot be realised
simultaneously in a dynamically consistent way.
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Outlook

• We hope to prove our conjecture!

• Dynamical inconsistency argument is conceptually clear, but a fully
explicit calculation is still missing.

• What about higher dimensions? Additional complications arise.
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