The Discrete Semiclassical Action of Causal Dynamical Triangulations

Tomasz Trześniewski*

Institute of Theoretical Physics, Wrocław University, Poland

October 7, 2011

^{*}In cooperation with J. Gizbert-Studnicki, J. Jurkiewicz, A. Görlich 🗆 🔻 💋 🔻 📲 🔻 👙 👙 🖠

Outline:

- Structure of the Causal Dynamical Triangulations model
 - Path integral for gravitation and Dynamical Triangulations
 - Regularisation of the path integral via discrete geometries
 - Preservation of causality and its benevolences
- Working with the CDT model
 - Numerical Monte Carlo simulations
 - Fundamental results of numerics
- Semiclassical solution of CDT
 - The single structure: (4, 1) simplices
 - The double structure: (4, 1) and (3, 2) simplices
 - Final remarks and the triple structure

Outline:

- Structure of the Causal Dynamical Triangulations model
 - Path integral for gravitation and Dynamical Triangulations
 - Regularisation of the path integral via discrete geometries
 - Preservation of causality and its benevolences
- Working with the CDT model
 - Numerical Monte Carlo simulations
 - Fundamental results of numerics
- Semiclassical solution of CDT
 - The single structure: (4, 1) simplices
 - The double structure: (4, 1) and (3, 2) simplices
 - Final remarks and the triple structure

Outline:

- Structure of the Causal Dynamical Triangulations model
 - Path integral for gravitation and Dynamical Triangulations
 - Regularisation of the path integral via discrete geometries
 - Preservation of causality and its benevolences
- Working with the CDT model
 - Numerical Monte Carlo simulations
 - Fundamental results of numerics
- Semiclassical solution of CDT
 - The single structure: (4, 1) simplices
 - The double structure: (4,1) and (3,2) simplices
 - Final remarks and the triple structure

Path integral formulation of quantum gravity

The propagator in one-dimensional quantum mechanics

$$G(x'', x'; t'', t') = \int_{\text{Paths}(x'', x')} \mathcal{D}[x(t)] \exp\left(\frac{i}{\hbar} S[x(t)]\right)$$

By analogy, for gravitational field

where

$$S_{EH}[g_{\mu
u}] = rac{1}{16\pi G} \int_M \!\! d^d x \; \sqrt{|\det g|} \left(R - 2\Lambda
ight)$$

and $g_{\mu\nu}\equiv [g_{\mu\nu}]\in {\rm Geom}(M)$ denotes the equivalence class of metrics with respect to diffeomorphisms

The illness and a remedy

Problems with the gravitational path integral

- Necessity of a suitable regularisation and renormalisation
- No absolute parametrization of geometries
- Ambiguity of the (needed) Wick rotation

A possible cure – Dynamical Triangulations

- Lattice regularisation (discretisation) of geometries
- Length of lattice links as an UV cutoff
- Renormalisation by taking the continuous limit

Recipe for Dynamical Triangulations

Explicitly, we replace the continuous partition function

with the discrete

$$\mathcal{Z}(\kappa_0, \kappa_4, \Delta) = \sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} \exp\left(\frac{i}{\hbar} S_R[\mathcal{T}]\right), \ C_{\mathcal{T}} \equiv |\mathrm{Aut}(\mathcal{T})|,$$

where the sum is over piecewise linear manifolds of a fixed topology, assembled from intrisically Minkowskian polytopes (most conviently equilateral simplices)

Geometry without coordinates

Curvature is associated with (d-2)-subsimplices and expressed by deficit angles around them $\delta \colon \sum_{k \in \wedge (d-2)} \Theta_k = 2\pi - \delta$, hence

$$\frac{1}{2} \int_{M} d^{d}x \sqrt{|\det g|} R \longmapsto \sum_{i \in \mathcal{T}} \operatorname{vol}(\triangle_{i}^{(d-2)}) \delta_{i},$$

$$\int_{M} d^{d}x \sqrt{|\det g|} \longmapsto \sum_{i \in \mathcal{T}} \operatorname{vol}(\triangle_{i}^{(d)})$$

Figure: Curvature at a 2-dim manifold built from non-equilateral triangles

Imposing causality on Dynamical Triangulations

Restrictions on a set of discrete geometries

- Simplicial manifolds must admit a global proper-time foliation
- Consequently, they are built from time-denoted layers
- Furthermore, topology of their spatial slices is preserved
- There exist d types of possible simplicial building blocks

Figure: Types of simplices in CDT for d = 4 (without the dual ones)

Transition to the Euclidean framework

Let us introduce anisotropy between time and space in a triangulation with a cutoff *a*,

$$I_{\text{timelike}}^2 = -\alpha \, \mathbf{a}^2, \, I_{\text{spacelike}}^2 = \mathbf{a}^2,$$

Then there is a straightforward Wick rotation $\alpha \mapsto -\alpha$ transforming

$$\sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} \exp \left(\frac{i}{\hbar} S_{R}[\mathcal{T}] \right) \longmapsto \sum_{\mathcal{T}'} \frac{1}{C_{\mathcal{T}'}} \exp \left(-\frac{1}{\hbar} S_{R}^{E}[\mathcal{T}'] \right),$$

where

$$S_{R}^{E}[\mathcal{T}'] = -(\kappa_{0} + 6\Delta)N_{0} + \kappa_{4}(N_{4}^{(4,1)} + N_{4}^{(3,2)}) + \Delta(2N_{4}^{(4,1)} + N_{4}^{(3,2)}),$$

if $\alpha > \frac{7}{12}$ (in case of d = 4)

CDT research

Towards numerical implementation

- Wick rotated, the CDT-model becomes a kind of statistical system of random geometry
- Thus far, it is analytically solvable only for d = 2
- Might be investigated numerically through the MC simulations
- ullet An appropriate program for d=4 has been written by J. Jurkiewicz and A. Görlich and improved recently by J. Gizbert-Studnicki

Applied numerical setup

The method

- We start from some simple, ad hoc constructed configuration
- Consecutive triangulations are generated using MC moves
- There are 7 kinds of such allowed moves (in case of d = 4)

Technical choices

- Topology of the simplicial manifold $S^1 \times S^3$ (time is periodic)
- Fixed number of time-denoted layers / spatial slices
- Number of simplices kept restricted due to a modified action $S_R^E(\mathcal{T}) + \varepsilon (\langle N_A^{(4,1)} \rangle \mathcal{N}_4)^2$

Phase structure of CDT

Phases

- A (sparse) unphysical
- B (squashed) unphysical
- C (extended) physical

Figure: An individual configuration from phase A

Figure: Phase diagram of 4-dim CDT

Phase structure of CDT

Phases

- A (sparse) unphysical
- B (squashed) unphysical
- C (extended) physical

Figure: Phase diagram of 4-dim CDT

Figure: An individual configuration from phase B

Phase structure of CDT

Phases

- A (sparse) unphysical
- B (squashed) unphysical
- C (extended) physical

Figure: Phase diagram of 4-dim CDT

Figure: An individual configuration from phase C

Tools of investigation

Data characteristics

- Our numerical setup yields the "grand canonical" ensemble
- ullet Yet all generated configurations have \sim the same weights
- Hence we can easily calculate observables

Basic observables

- The average distribution of the number of (p,q) simplices $\langle N_{p,q}(t) \rangle$
- The covariance matrix of the number of (p,q) simplices $C_{p,q}(t',t'') = \langle (N_{p,q}(t) \langle N_{p,q}(t) \rangle)(N_{p,q}(t') \langle N_{p,q}(t') \rangle) \rangle$

Semiclassical approximation of the model

Let us consider only (4,1) simplices; it turns out behaviour of them can be described using a typical semiclassical approximation,

$$S_{
m dis}[ar{\it N}_{4,1}(t)+\delta{\it N}_{4,1}(t)]=S_{
m dis}[ar{\it N}_{4,1}(t)]+$$

$$\frac{1}{2!} \sum_{j,i=0}^{l-1} \partial_{N_{4,1}(j)} \partial_{N_{4,1}(i)} S_{\text{dis}}[\bar{N}_{4,1}(t)] \delta N_{4,1}(i) \delta N_{4,1}(j) + O(\delta N_{4,1}(t)^3),$$

where S_{dis} is a discretised action of the Wick-rotated mini-superspace model

$$S_{
m cont} = rac{1}{24\pi G} \int\!\! dt \; \sqrt{g_{tt}} igg(rac{g^{tt} \dot{V}_3(t)^2}{V_3(t)} + k_2 \, V_3(t)^{rac{1}{3}} - \lambda \, V_3(t) igg),$$

where $V_3(t)=2\pi^2 a(t)^3$ (a(t) is the scale factor of a homogenous, isotropic universe)

Emergence of the de Sitter universe

The average distribution $\langle N_{4,1}(i) \rangle$ in the blob is well approximated by a discrete version of the classical solution of S_{cont} ,

$$N_0 \cos^3(\omega(t-t_0))$$

Figure: The average distribution $\langle N_{4,1}(i) \rangle$ with the (semi)classical solution fitted and the average quantum fluctuations

Role of the (inverse) covariance matrix

The inverse of the covariance matrix $P_{4,1} := (C_{4,1})^{-1}$ satisfies a relation

$$(P_{4,1})_{i,j} = \partial_{N_{4,1}(j)} \partial_{N_{4,1}(i)} S_{dis}[\langle N_{4,1}(t) \rangle]$$

Hence it is used for further investigation of the discrete semiclassical action, having in particular very simple structure,

$$P_{4,1} = \begin{pmatrix} a_1 & b_1 & * & * & b_T \\ b_1 & a_2 & \ddots & * & * \\ * & \ddots & \ddots & \ddots & * \\ * & * & \ddots & a_{T-1} & b_{T-1} \\ b_T & * & * & b_{T-1} & a_T \end{pmatrix},$$

where asterisks denote numerical noise

Form of the discrete action

The discrete action may be decomposed into

$$S_{\mathrm{dis}} = k_1 \sum_{t=0}^{T-1} \left(\tilde{S}_k(t) + \tilde{S}_p(t) \right) + \varepsilon \left(\langle N_{4,1} \rangle - N_4 \right)^2,$$

where $k_1 \sum_t \tilde{S}_k(t)$, $k_1 \sum_t \tilde{S}_p(t)$ are its kinetic and potential part, respectively; investigation of their precise form favours the more involved kinetic term

$$\tilde{S}_k(t) = \frac{(N_{4,1}(t+1) - N_{4,1}(t))^2}{N_{4,1}(t) + N_{4,1}(t+1)} \left(1 + \xi_1 \left(\frac{N_{4,1}(t+1) - N_{4,1}(t)}{N_{4,1}(t) + N_{4,1}(t+1)}\right)^2\right)$$

and the simplest possible potential term

$$\tilde{S}_{p}(t) = \tilde{k}_{2}N_{4,1}(t)^{\frac{1}{3}} - \tilde{\lambda}N_{4,1}(t)$$

Figure: $P_{4,1}$ and second derivatives of the kinetic term (left) and the potential term (right)

Spatial slices of (3, 2) simplices

In the blob $\langle N_{3,2}(i+\frac{1}{2})\rangle$ is proportional to $\langle N_{4,1}(i)\rangle$ and after rescaling their joint distribution can automatically be fitted with the semiclassical solution

Figure: The joint distribution of $\langle N_{4,1}(i) \rangle$, $\rho \langle N_{3,2}(i+\frac{1}{2}) \rangle$ with the classical solution fitted and the average quantum fluctuations

The double inverse covariance matrix

To study the extended discrete action we introduce the joint covariance matrix for (4,1) and (3,2) simplices, which inverse has the form

$$P_{\text{dbl}} = \begin{pmatrix} c_1 & d_1 & * & * & d_T & f_1 & * & * & * & f_T \\ d_1 & c_2 & \ddots & * & * & f_{T-1} & f_2 & * & * & * \\ * & \ddots & \ddots & \ddots & * & * & \ddots & \ddots & * & * \\ * & * & \ddots & c_{T-1} & d_{T-1} & * & * & \ddots & f_{T-1} & * \\ d_T & * & * & d_{T-1} & c_T & * & * & * & f_1 & f_T \\ \\ f_1 & f_{T-1} & * & * & * & e_1 & * & * & * & * \\ * & f_2 & \ddots & * & * & * & e_2 & * & * & * \\ * & * & \ddots & \ddots & * & * & * & e_2 & * & * & * \\ * & * & * & f_{T-1} & f_1 & * & * & * & e_{T-1} & * \\ f_T & * & * & * & f_T & * & * & * & e_T \end{pmatrix}$$

Discrete action for the double slice structure

The discrete action generalizes to

$$S_{ ext{dis}}^{(ext{dbl})} = extstyle{k}_1^{(ext{d})} \sum_{t=0}^{T-1} \left(ilde{S}_{k}^{(ext{dbl})}(t) + ilde{S}_{p}^{(ext{dbl})}(t)
ight) + arepsilon \left(\langle extstyle{N}_{4,1}
angle - \mathcal{N}_4
ight)^2$$

Fair agreement with the data is yielded by the following kinetic term

$$\begin{split} \tilde{S}_{k}^{(\text{dbl})}(t) &= -a \, \frac{2(N_{4,1}(t+1) - N_{4,1}(t))^{2}}{N_{4,1}(t) + N_{4,1}(t+1)} + \\ \frac{2(\rho \, N_{3,2}(t+\frac{1}{2}) - N_{4,1}(t))^{2}}{N_{4,1}(t) + \sigma \, N_{3,2}(t+\frac{1}{2})} + \frac{2(N_{4,1}(t) - \rho \, N_{3,2}(t-\frac{1}{2}))^{2}}{\sigma \, N_{3,2}(t-\frac{1}{2}) + N_{4,1}(t)} \end{split}$$

and the intuitive potential term

$$\begin{split} \tilde{S}_{p}^{(\text{dbl})}(t) &= -\tilde{k}_{2}^{11} N_{4,1}(t)^{\frac{1}{3}} + \tilde{\lambda}^{11} N_{4,1}(t) \\ &+ \tilde{k}_{2}^{22} N_{3,2}(t + \frac{1}{2})^{\frac{1}{3}} - \tilde{\lambda}^{22} N_{3,2}(t + \frac{1}{2}) \end{split}$$

Figure: Second derivatives of the action and diagonals of blocks P_{db1}^{11} (left) and P_{db1}^{22} (right)

Reduction to the single structure ((4, 1) simplices only)

Using one of two versions of Boltz-Banachiewicz inversion formula one may retrieve $P_{4,1}$ from P_{dbl} :

$$P_{4,1} = \left((P_{\text{dbl}}^{11})^{-1} + Cov_{\text{dbl}}^{12} P_{3,2} (Cov_{\text{dbl}}^{12})^{\text{T}} \right)^{-1}$$

Integrating out with some approximations (3,2) simplices we obtain the single structure coupling constants from the double ones:

$$\begin{split} k_1 &= k_1^{(d)} \Big(-a + \frac{\rho}{\rho + \sigma} \Big), \\ \tilde{k}_2 &= \Big(-\tilde{k}_2^{11} + \rho^{-\frac{1}{3}} \, \tilde{k}_2^{22} \Big) \frac{\rho + \sigma}{\rho - a(\rho + \sigma)}, \\ \tilde{\lambda} &= \Big(-\tilde{\lambda}^{11} + \rho^{-1} \, \tilde{\lambda}^{22} \Big) \frac{\rho + \sigma}{\rho - a(\rho + \sigma)}, \end{split}$$

which agrees fairly with the data

Summary

Crucial points

- In the CDT-model gravitational path integral is approximated by the sum over causally well-behaving simplicial manifolds
- After being Wick-rotated, the model for d=4 has been explored using numerical MC simulations
- In one of the observed phases of CDT the semiclassical solution emerges
- The semiclassical description involves the discrete structure

Outlook – the triple structure

The ultimate extension of the discrete framework includes all types of simplices and due to the invariance under time inversion $\langle N_{3,2}(i+\frac{1}{3})\rangle \approx \langle N_{2,3}(i+\frac{2}{3})\rangle \approx \frac{1}{2}\langle N_{3,2}(i+\frac{1}{2})\rangle$

Figure: The joint distribution of $\langle N_{4,1}(i) \rangle$, $2\rho \langle N_{3,2}(i+\frac{1}{3}) \rangle$, $2\rho \langle N_{2,3}(i+\frac{2}{3}) \rangle$ with the classical solution fitted and the average quantum fluctuations

References

J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, J. Gizbert-Studnicki & T.T., *The Semiclassical Limit of Causal Dynamical Triangulations*, Nuclear Physics B **849** (2011) 144-165, arXiv:1102.3929 [hep-th]

T.T., Analysis of the Semiclassical Solution of CDT, arXiv:1102.4643 [hep-th]

International PhD Projects Programme (MPD) – Grants for Innovations

