The Discrete Semiclassical Action of Causal Dynamical Triangulations

Tomasz Trześniewski*
Institute of Theoretical Physics, Wrocław University, Poland

October 7, 2011

[^0]
Outline:

(1) Structure of the Causal Dynamical Triangulations model

- Path integral for gravitation and Dynamical Triangulations
- Regularisation of the path integral via discrete geometries
- Preservation of causality and its benevolences

(2)Working with the CDT model

- Numerical Monte Carlo simulations
- Fundamental results of numerics

Semiclassical solution of CDT

- The single structure: $(4,1)$ simplices
- The double structure: $(4,1)$ and $(3,2)$ simplices
- Final remarks and the triple structure

Outline:

(1) Structure of the Causal Dynamical Triangulations model

- Path integral for gravitation and Dynamical Triangulations
- Regularisation of the path integral via discrete geometries
- Preservation of causality and its benevolences
(2) Working with the CDT model
- Numerical Monte Carlo simulations
- Fundamental results of numerics

Outline:

(1) Structure of the Causal Dynamical Triangulations model

- Path integral for gravitation and Dynamical Triangulations
- Regularisation of the path integral via discrete geometries
- Preservation of causality and its benevolences
(2) Working with the CDT model
- Numerical Monte Carlo simulations
- Fundamental results of numerics
(3) Semiclassical solution of CDT
- The single structure: $(4,1)$ simplices
- The double structure: $(4,1)$ and $(3,2)$ simplices
- Final remarks and the triple structure

Path integral formulation of quantum gravity

The propagator in one-dimensional quantum mechanics

$$
G\left(x^{\prime \prime}, x^{\prime} ; t^{\prime \prime}, t^{\prime}\right)=\int_{\operatorname{Paths}\left(x^{\prime \prime}, x^{\prime}\right)} \mathcal{D}[x(t)] \exp \left(\frac{i}{\hbar} S[x(t)]\right)
$$

By analogy, for gravitational field

$$
G_{G, \Lambda}\left(g_{i j}^{\prime \prime}, g_{i j}^{\prime} ; t^{\prime \prime}, t^{\prime}\right):=\int_{\operatorname{Geom}(M)} \mathcal{D}\left[g_{\mu \nu}\right] \exp \left(\frac{i}{\hbar} S_{E H}\left[g_{\mu \nu}\right]\right),
$$

where

$$
S_{E H}\left[g_{\mu \nu}\right]=\frac{1}{16 \pi G} \int_{M} d^{d} x \sqrt{|\operatorname{det} g|}(R-2 \Lambda)
$$

and $g_{\mu \nu} \equiv\left[g_{\mu \nu}\right] \in \operatorname{Geom}(M)$ denotes the equivalence class of metrics with respect to diffeomorphisms

The illness and a remedy

Problems with the gravitational path integral

- Necessity of a suitable regularisation and renormalisation
- No absolute parametrization of geometries
- Ambiguity of the (needed) Wick rotation

A possible cure - Dynamical Triangulations

- Lattice regularisation (discretisation) of geometries
- Length of lattice links as an UV cutoff
- Renormalisation by taking the continuous limit

Recipe for Dynamical Triangulations

Explicitly, we replace the continuous partition function

$$
\mathcal{Z}(G, \Lambda)=\int_{\operatorname{Geom}(M)} \mathcal{D}\left[g_{\mu \nu}\right] \exp \left(\frac{i}{\hbar} S_{E H}\left[g_{\mu \nu}\right]\right)
$$

with the discrete

$$
\mathcal{Z}\left(\kappa_{0}, \kappa_{4}, \Delta\right)=\sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} \exp \left(\frac{i}{\hbar} S_{R}[\mathcal{T}]\right), C_{\mathcal{T}} \equiv|\operatorname{Aut}(\mathcal{T})|
$$

where the sum is over piecewise linear manifolds of a fixed topology, assembled from intrisically Minkowskian polytopes (most conviently equilateral simplices)

Geometry without coordinates

Curvature is associated with $(d-2)$-subsimplices and expressed by deficit angles around them $\delta: \sum_{k \in \Delta^{(d-2)}} \Theta_{k}=2 \pi-\delta$, hence

$$
\begin{array}{r}
\frac{1}{2} \int_{M} d^{d} x \sqrt{|\operatorname{det} g|} R \longmapsto \sum_{i \in \mathcal{T}} \operatorname{vol}\left(\triangle_{i}^{(d-2)}\right) \delta_{i} \\
\int_{M} d^{d} x \sqrt{|\operatorname{det} g|} \longmapsto \sum_{i \in \mathcal{T}} \operatorname{vol}\left(\triangle_{i}^{(d)}\right)
\end{array}
$$

Figure: Curvature at a 2-dim manifold built from non-equilateral triangles

Imposing causality on Dynamical Triangulations

Restrictions on a set of discrete geometries

- Simplicial manifolds must admit a global proper-time foliation
- Consequently, they are built from time-denoted layers
- Furthermore, topology of their spatial slices is preserved
- There exist d types of possible simplicial building blocks

$$
t+1
$$

t

Figure: Types of simplices in CDT for $d=4$ (without the dual ones)

Transition to the Euclidean framework

Let us introduce anisotropy between time and space in a triangulation with a cutoff a,

$$
l_{\text {timelike }}^{2}=-\alpha a^{2}, l_{\text {spacelike }}^{2}=a^{2}
$$

Then there is a straightforward Wick rotation $\alpha \mapsto-\alpha$ transforming

$$
\sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} \exp \left(\frac{i}{\hbar} S_{R}[\mathcal{T}]\right) \longmapsto \sum_{\mathcal{T}^{\prime}} \frac{1}{C_{\mathcal{T}^{\prime}}} \exp \left(-\frac{1}{\hbar} S_{R}^{E}\left[\mathcal{T}^{\prime}\right]\right)
$$

where

$$
S_{R}^{E}\left[\mathcal{T}^{\prime}\right]=-\left(\kappa_{0}+6 \Delta\right) N_{0}+\kappa_{4}\left(N_{4}^{(4,1)}+N_{4}^{(3,2)}\right)+\Delta\left(2 N_{4}^{(\mathbf{4}, \mathbf{1})}+N_{4}^{(\mathbf{3}, \mathbf{2})}\right),
$$

if $\alpha>\frac{7}{12}$ (in case of $d=4$)

CDT research

Towards numerical implementation

- Wick rotated, the CDT-model becomes a kind of statistical system of random geometry
- Thus far, it is analytically solvable only for $d=2$
- Might be investigated numerically through the MC simulations
- An appropriate program for $d=4$ has been written by J. Jurkiewicz and A. Görlich and improved recently by J. GizbertStudnicki

Applied numerical setup

The method

- We start from some simple, ad hoc constructed configuration
- Consecutive triangulations are generated using MC moves
- There are 7 kinds of such allowed moves (in case of $d=4$)

Technical choices

- Topology of the simplicial manifold $S^{1} \times S^{3}$ (time is periodic)
- Fixed number of time-denoted layers / spatial slices
- Number of simplices kept restricted due to a modified action $S_{R}^{E}(\mathcal{T})+\varepsilon\left(\left\langle N_{4}^{(4,1)}\right\rangle-\mathcal{N}_{4}\right)^{2}$

Phase structure of CDT

Phases

- A (sparse) - unphysical
- B (squashed) - unphysical
- C (extended) - physical

Figure: Phase diagram of 4-dim CDT

Figure: An individual configuration from phase A

Phase structure of CDT

Phases

- A (sparse) - unphysical
- B (squashed) - unphysical
- C (extended) - physical

Figure: Phase diagram of 4-dim CDT

Figure: An individual configuration from phase B

Phase structure of CDT

Phases

- A (sparse) - unphysical
- B (squashed) - unphysical
- C (extended) - physical

Figure: Phase diagram of 4-dim CDT

Figure: An individual configuration from phase C

Tools of investigation

Data characteristics

- Our numerical setup yields the "grand canonical" ensemble
- Yet all generated configurations have \sim the same weights
- Hence we can easily calculate observables

Basic observables

- The average distribution of the number of (p, q) simplices $\left\langle N_{p, q}(t)\right\rangle$
- The covariance matrix of the number of (p, q) simplices $C_{p, q}\left(t^{\prime}, t^{\prime \prime}\right)=\left\langle\left(N_{p, q}(t)-\left\langle N_{p, q}(t)\right\rangle\right)\left(N_{p, q}\left(t^{\prime}\right)-\left\langle N_{p, q}\left(t^{\prime}\right)\right\rangle\right)\right\rangle$

Semiclassical approximation of the model

Let us consider only $(4,1)$ simplices; it turns out behaviour of them can be described using a typical semiclassical approximation,

$$
\begin{array}{r}
S_{\mathrm{dis}}\left[\bar{N}_{4,1}(t)+\delta N_{4,1}(t)\right]=S_{\mathrm{dis}}\left[\bar{N}_{4,1}(t)\right]+ \\
\frac{1}{2!} \sum_{j, i=0}^{T-1} \partial_{N_{4,1}(j)} \partial_{N_{4,1}(i)} S_{\mathrm{dis}}\left[\bar{N}_{4,1}(t)\right] \delta N_{4,1}(i) \delta N_{4,1}(j)+O\left(\delta N_{4,1}(t)^{3}\right),
\end{array}
$$

where $S_{\text {dis }}$ is a discretised action of the Wick-rotated mini-superspace model

$$
S_{\mathrm{cont}}=\frac{1}{24 \pi G} \int d t \sqrt{g_{t t}}\left(\frac{g^{t t} \dot{V}_{3}(t)^{2}}{V_{3}(t)}+k_{2} V_{3}(t)^{\frac{1}{3}}-\lambda V_{3}(t)\right),
$$

where $V_{3}(t)=2 \pi^{2} a(t)^{3}(a(t)$ is the scale factor of a homogenous, isotropic universe)

Emergence of the de Sitter universe

The average distribution $\left\langle N_{4,1}(i)\right\rangle$ in the blob is well approximated by a discrete version of the classical solution of $S_{\text {cont }}$,

$$
N_{0} \cos ^{3}\left(\omega\left(t-t_{0}\right)\right)
$$

Figure: The average distribution $\left\langle N_{4,1}(i)\right\rangle$ with the (semi)classical solution fitted and the average quantum fluctuations

Role of the (inverse) covariance matrix

The inverse of the covariance matrix $P_{4,1}:=\left(C_{4,1}\right)^{-1}$ satisfies a relation

$$
\left(P_{4,1}\right)_{i, j}=\partial_{N_{4,1}(j)} \partial_{N_{4,1}(i)} S_{\text {dis }}\left[\left\langle N_{4,1}(t)\right\rangle\right]
$$

Hence it is used for further investigation of the discrete semiclassical action, having in particular very simple structure,

$$
P_{4,1}=\left(\begin{array}{ccccc}
a_{1} & b_{1} & * & * & b_{T} \\
b_{1} & a_{2} & \ddots & * & * \\
* & \ddots & \ddots & \ddots & * \\
* & * & \ddots & a_{T-1} & b_{T-1} \\
b_{T} & * & * & b_{T-1} & a_{T}
\end{array}\right)
$$

where asterisks denote numerical noise

Form of the discrete action

The discrete action may be decomposed into

$$
S_{\mathrm{dis}}=k_{1} \sum_{t=0}^{T-1}\left(\tilde{S}_{k}(t)+\tilde{S}_{p}(t)\right)+\varepsilon\left(\left\langle N_{4,1}\right\rangle-\mathcal{N}_{4}\right)^{2}
$$

where $k_{1} \sum_{t} \tilde{S}_{k}(t), k_{1} \sum_{t} \tilde{S}_{p}(t)$ are its kinetic and potential part, respectively; investigation of their precise form favours the more involved kinetic term

$$
\tilde{S}_{k}(t)=\frac{\left(N_{4,1}(t+1)-N_{4,1}(t)\right)^{2}}{N_{4,1}(t)+N_{4,1}(t+1)}\left(1+\xi_{1}\left(\frac{N_{4,1}(t+1)-N_{4,1}(t)}{N_{4,1}(t)+N_{4,1}(t+1)}\right)^{2}\right)
$$

and the simplest possible potential term

$$
\tilde{S}_{p}(t)=\tilde{k}_{2} N_{4,1}(t)^{\frac{1}{3}}-\tilde{\lambda} N_{4,1}(t)
$$

Comparison with the data

Figure: $P_{4,1}$ and second derivatives of the kinetic term (left) and the potential term (right)

Comparison with the data

Comparison with the data

Spatial slices of $(\mathbf{3}, \mathbf{2})$ simplices

In the blob $\left\langle N_{3,2}\left(i+\frac{1}{2}\right)\right\rangle$ is proportional to $\left\langle N_{4,1}(i)\right\rangle$ and after rescaling their joint distribution can automatically be fitted with the semiclassical solution

Figure: The joint distribution of $\left\langle N_{4,1}(i)\right\rangle, \rho\left\langle N_{3,2}\left(i+\frac{1}{2}\right)\right\rangle$ with the classical solution fitted and the average quantum fluctuations

The double inverse covariance matrix

To study the extended discrete action we introduce the joint covariance matrix for $(4,1)$ and $(\mathbf{3}, 2)$ simplices, which inverse has the form

$$
P_{\mathrm{dbl}}=\left(\begin{array}{cccccccccc}
c_{1} & d_{1} & * & * & d_{T} & f_{1} & * & * & * & f_{T} \\
d_{1} & c_{2} & \ddots & * & * & f_{T-1} & f_{2} & * & * & * \\
* & \ddots & \ddots & \ddots & * & * & \ddots & \ddots & * & * \\
* & * & \ddots & c_{T-1} & d_{T-1} & * & * & \ddots & f_{T-1} & * \\
d_{T} & * & * & d_{T-1} & c_{T} & * & * & * & f_{1} & f_{T} \\
f_{1} & f_{T-1} & * & * & * & e_{1} & * & * & * & * \\
* & f_{2} & \ddots & * & * & * & e_{2} & * & * & * \\
* & * & \ddots & \ddots & * & * & * & \ddots & * & * \\
* & * & * & f_{T-1} & f_{1} & * & * & * & e_{T-1} & * \\
f_{T} & * & * & * & f_{T} & * & * & * & * & e_{T}
\end{array}\right)
$$

Discrete action for the double slice structure

The discrete action generalizes to

$$
S_{\mathrm{dis}}^{(\mathrm{dbl})}=k_{1}^{(\mathrm{d})} \sum_{t=0}^{T-1}\left(\tilde{S}_{k}^{(\mathrm{dbl})}(t)+\tilde{S}_{p}^{(\mathrm{dbl})}(t)\right)+\varepsilon\left(\left\langle\mathcal{N}_{4,1}\right\rangle-\mathcal{N}_{4}\right)^{2}
$$

Fair agreement with the data is yielded by the following kinetic term

$$
\begin{array}{r}
\tilde{S}_{k}^{(\mathrm{dbl})}(t)=-a \frac{2\left(N_{4,1}(t+1)-N_{4,1}(t)\right)^{2}}{N_{4,1}(t)+N_{4,1}(t+1)}+ \\
\frac{2\left(\rho N_{3,2}\left(t+\frac{1}{2}\right)-N_{4,1}(t)\right)^{2}}{N_{4,1}(t)+\sigma N_{3,2}\left(t+\frac{1}{2}\right)}+\frac{2\left(N_{4,1}(t)-\rho N_{3,2}\left(t-\frac{1}{2}\right)\right)^{2}}{\sigma N_{3,2}\left(t-\frac{1}{2}\right)+N_{4,1}(t)}
\end{array}
$$

and the intuitive potential term

$$
\begin{aligned}
& \tilde{S}_{p}^{(\mathrm{dbl})}(t)=-\tilde{k}_{2}^{11} N_{4,1}(t)^{\frac{1}{3}}+\tilde{\lambda}^{11} N_{4,1}(t) \\
& \quad+\tilde{k}_{2}^{22} N_{3,2}\left(t+\frac{1}{2}\right)^{\frac{1}{3}}-\tilde{\lambda}^{22} N_{3,2}\left(t+\frac{1}{2}\right)
\end{aligned}
$$

Comparison with the data

Figure: Second derivatives of the action and diagonals of blocks P_{dbl}^{11} (left) and P_{dbl}^{22} (right)

Comparison with the data

Comparison with the data

Reduction to the single structure ((4,1) simplices only)

Using one of two versions of Boltz-Banachiewicz inversion formula one may retrieve $P_{4,1}$ from $P_{\text {dы }}$:

$$
P_{4,1}=\left(\left(P_{\mathrm{dbl}}^{11}\right)^{-1}+\operatorname{Cov}_{\mathrm{dbl}}^{12} P_{3,2}\left(\operatorname{Cov}_{\mathrm{dbl}}^{12}\right)^{\mathrm{T}}\right)^{-1}
$$

Integrating out with some approximations $(\mathbf{3}, \mathbf{2})$ simplices we obtain the single structure coupling constants from the double ones:

$$
\begin{array}{r}
k_{1}=k_{1}^{(\mathrm{d})}\left(-a+\frac{\rho}{\rho+\sigma}\right), \\
\tilde{k}_{2}=\left(-\tilde{k}_{2}^{11}+\rho^{-\frac{1}{3}} \tilde{k}_{2}^{22}\right) \frac{\rho+\sigma}{\rho-a(\rho+\sigma)}, \\
\tilde{\lambda}=\left(-\tilde{\lambda}^{11}+\rho^{-1} \tilde{\lambda}^{22}\right) \frac{\rho+\sigma}{\rho-a(\rho+\sigma)},
\end{array}
$$

which agrees fairly with the data

Summary

Crucial points

- In the CDT-model gravitational path integral is approximated by the sum over causally well-behaving simplicial manifolds
- After being Wick-rotated, the model for $d=4$ has been explored using numerical MC simulations
- In one of the observed phases of CDT the semiclassical solution emerges
- The semiclassical description involves the discrete structure

Outlook - the triple structure

The ultimate extension of the discrete framework includes all types of simplices and due to the invariance under time inversion $\left\langle N_{3,2}\left(i+\frac{1}{3}\right)\right\rangle \approx$ $\left\langle N_{2,3}\left(i+\frac{2}{3}\right)\right\rangle \approx \frac{1}{2}\left\langle N_{3,2}\left(i+\frac{1}{2}\right)\right\rangle$

Figure: The joint distribution of $\left\langle N_{4,1}(i)\right\rangle, 2 \rho\left\langle N_{3,2}\left(i+\frac{1}{3}\right)\right\rangle, 2 \rho\left\langle N_{2,3}\left(i+\frac{2}{3}\right)\right\rangle$ with the classical solution fitted and the average quantum fluctuations

References

J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, J. Gizbert-Studnicki \& T.T., The Semiclassical Limit of Causal Dynamical Triangulations, Nuclear Physics B 849 (2011) 144-165, arXiv:1102.3929 [hep-th]T.T., Analysis of the Semiclassical Solution of CDT, arXiv:1102.4643 [hep-th]

International PhD Projects Programme (MPD) - Grants for Innovations DEVELOPMENT FUND
\square

[^0]: *In cooperation with J. Gizbert-Studnicki, J. Jurkiewicz, A. Görlich

