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Path integral formulation of quantum gravity

The propagator in one-dimensional quantum mechanics

G(x ′′, x ′; t ′′, t ′) =

∫
Paths(x ′′, x′)

D[x(t)] exp
( i
~

S[x(t)]
)

By analogy, for gravitational field

GG,Λ(g′′ij ,g
′
ij ; t ′′, t ′) :=

∫
Geom(M)

D[gµν ] exp
( i
~

SEH [gµν ]
)
,

where

SEH [gµν ] =
1

16πG

∫
M
ddx

√
|det g| (R − 2Λ)

and gµν ≡ [gµν ] ∈ Geom(M) denotes the equivalence class of metrics
with respect to diffeomorphisms
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The illness and a remedy

Problems with the gravitational path integral

Necessity of a suitable regularisation and renormalisation
No absolute parametrization of geometries
Ambiguity of the (needed) Wick rotation

A possible cure – Dynamical Triangulations

Lattice regularisation (discretisation) of geometries
Length of lattice links as an UV cutoff
Renormalisation by taking the continuous limit
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Recipe for Dynamical Triangulations

Explicitly, we replace the continuous partition function

Z(G,Λ) =

∫
Geom(M)

D[gµν ] exp
( i
~

SEH [gµν ]
)

with the discrete

Z(κ0, κ4,∆) =
∑
T

1
CT

exp
( i
~

SR[T ]
)
, CT ≡ |Aut(T )|,

where the sum is over piecewise linear manifolds of a fixed topology,
assembled from intrisically Minkowskian polytopes (most conviently
equilateral simplices)
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Geometry without coordinates
Curvature is associated with (d − 2)-subsimplices and expressed by
deficit angles around them δ :

∑
k∈4(d−2) Θk = 2π − δ, hence

1
2

∫
M
ddx

√
|det g|R 7−→

∑
i∈T

vol(4(d−2)
i ) δi ,∫

M
ddx

√
|det g| 7−→

∑
i∈T

vol(4(d)
i )

Figure: Curvature at a 2-dim manifold built from non-equilateral triangles
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Imposing causality on Dynamical Triangulations

Restrictions on a set of discrete geometries

Simplicial manifolds must admit a global proper-time foliation
Consequently, they are built from time-denoted layers
Furthermore, topology of their spatial slices is preserved
There exist d types of possible simplicial building blocks

Figure: Types of simplices in CDT for d = 4 (without the dual ones)
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Transition to the Euclidean framework

Let us introduce anisotropy between time and space in a triangulation
with a cutoff a,

l2timelike = −α a2, l2spacelike = a2,

Then there is a straightforward Wick rotation α 7→ −α transforming∑
T

1
CT

exp
( i
~

SR[T ]
)
7−→

∑
T ′

1
CT ′

exp
(
− 1

~
SE

R [T ′]
)
,

where

SE
R [T ′] = −(κ0 + 6∆)N0 + κ4(N(4,1)

4 + N(3,2)
4 ) + ∆(2N(4,1)

4 + N(3,2)
4 ),

if α > 7
12 (in case of d = 4)
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CDT research

Towards numerical implementation

Wick rotated, the CDT-model becomes a kind of statistical system
of random geometry
Thus far, it is analytically solvable only for d = 2
Might be investigated numerically through the MC simulations
An appropriate program for d = 4 has been written by J.
Jurkiewicz and A. Görlich and improved recently by J. Gizbert-
Studnicki
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Applied numerical setup

The method
We start from some simple, ad hoc constructed configuration
Consecutive triangulations are generated using MC moves
There are 7 kinds of such allowed moves (in case of d = 4)

Technical choices

Topology of the simplicial manifold S1 × S3 (time is periodic)
Fixed number of time-denoted layers / spatial slices
Number of simplices kept restricted due to a modified action
SE

R (T ) + ε (〈N(4,1)
4 〉 − N4)2
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Phase structure of CDT

Phases
A (sparse) – unphysical
B (squashed) – unphysical
C (extended) – physical

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

κ0

∆ A

B

C

Figure: Phase diagram of 4-dim CDT
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T. Trześniewski The Discrete Semiclassical Action of CDT 10 / 24



CDT-model ingredients
Work with the model

Semiclassical solution

Numerical simulations
Fundamental results

Phase structure of CDT

Phases
A (sparse) – unphysical
B (squashed) – unphysical
C (extended) – physical

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

κ0

∆ A

B

C

Figure: Phase diagram of 4-dim CDT

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60 70

N
4
,1

(t
)

t

Figure: An individual configuration
from phase B
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Tools of investigation

Data characteristics
Our numerical setup yields the "grand canonical" ensemble
Yet all generated configurations have ∼ the same weights
Hence we can easily calculate observables

Basic observables

The average distribution of the number of (p,q) simplices
〈Np,q(t)〉
The covariance matrix of the number of (p,q) simplices
Cp,q(t ′, t ′′) =

〈
(Np,q(t)− 〈Np,q(t)〉)(Np,q(t ′)− 〈Np,q(t ′)〉)

〉
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Semiclassical approximation of the model

Let us consider only (4,1) simplices; it turns out behaviour of them
can be described using a typical semiclassical approximation,

Sdis[N̄4,1(t) + δN4,1(t)] = Sdis[N̄4,1(t)]+

1
2!

T−1∑
j,i=0

∂N4,1(j)∂N4,1(i)Sdis[N̄4,1(t)] δN4,1(i)δN4,1(j) + O(δN4,1(t)3),

where Sdis is a discretised action of the Wick-rotated mini-superspace
model

Scont =
1

24πG

∫
dt
√

gtt

(
gtt V̇3(t)2

V3(t)
+ k2V3(t)

1
3 − λV3(t)

)
,

where V3(t) = 2π2a(t)3 (a(t) is the scale factor of a homogenous,
isotropic universe)
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Emergence of the de Sitter universe
The average distribution 〈N4,1(i)〉 in the blob is well approximated by a
discrete version of the classical solution of Scont,

N0 cos3(ω(t − t0))
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Figure: The average distribution 〈N4,1(i)〉 with the (semi)classical solution
fitted and the average quantum fluctuations
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Role of the (inverse) covariance matrix

The inverse of the covariance matrix P4,1 := (C4,1)−1 satisfies a rela-
tion

(P4,1)i,j = ∂N4,1(j)∂N4,1(i)Sdis[〈N4,1(t)〉]

Hence it is used for further investigation of the discrete semiclassical
action, having in particular very simple structure,

P4,1 =


a1 b1 ∗ ∗ bT

b1 a2
. . . ∗ ∗

∗ . . . . . . . . . ∗
∗ ∗ . . . aT−1 bT−1

bT ∗ ∗ bT−1 aT

 ,

where asterisks denote numerical noise
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Form of the discrete action

The discrete action may be decomposed into

Sdis = k1

T−1∑
t=0

(
S̃k (t) + S̃p(t)

)
+ ε (〈N4,1〉 − N4)2,

where k1
∑

t S̃k (t), k1
∑

t S̃p(t) are its kinetic and potential part, re-
spectively; investigation of their precise form favours the more involved
kinetic term

S̃k (t) =
(N4,1(t + 1)− N4,1(t))2

N4,1(t) + N4,1(t + 1)

(
1 + ξ1

(N4,1(t + 1)− N4,1(t)
N4,1(t) + N4,1(t + 1)

)2
)

and the simplest possible potential term

S̃p(t) = k̃2N4,1(t)
1
3 − λ̃N4,1(t)
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Comparison with the data

0.0001

0.001

100 1000

|k
1
∂

i+
1
∂

i
S̃

k
[t
]|

1
2 (⟨N4,1(i)⟩ + ⟨N4,1(i + 1)⟩)

|(P4,1)i,i+1 − 2ε|
fit of |k1 ∂i+1∂i S̃k[t]|

1e-06

1e-05

0.0001

100 1000

|∂
2 i
V

[t
]|

⟨N4,1(i)⟩

|(P4,1)i,i − 2ε − k1 ∂2
i S̃k[t]|

fit of |∂2
i V [t]|

Figure: P4,1 and second derivatives of the kinetic term (left) and the potential
term (right)
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Spatial slices of (3,2) simplices
In the blob 〈N3,2(i + 1

2 )〉 is proportional to 〈N4,1(i)〉 and after rescaling
their joint distribution can automatically be fitted with the semiclassical
solution
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Figure: The joint distribution of 〈N4,1(i)〉, ρ〈N3,2(i + 1
2 )〉 with the classical

solution fitted and the average quantum fluctuations
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The double inverse covariance matrix

To study the extended discrete action we introduce the joint covariance
matrix for (4,1) and (3,2) simplices, which inverse has the form

Pdbl =



c1 d1 ∗ ∗ dT f1 ∗ ∗ ∗ fT
d1 c2

. . . ∗ ∗ fT−1 f2 ∗ ∗ ∗
∗ . . . . . . . . . ∗ ∗ . . . . . . ∗ ∗
∗ ∗ . . . cT−1 dT−1 ∗ ∗ . . . fT−1 ∗

dT ∗ ∗ dT−1 cT ∗ ∗ ∗ f1 fT

f1 fT−1 ∗ ∗ ∗ e1 ∗ ∗ ∗ ∗
∗ f2

. . . ∗ ∗ ∗ e2 ∗ ∗ ∗
∗ ∗ . . . . . . ∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ fT−1 f1 ∗ ∗ ∗ eT−1 ∗
fT ∗ ∗ ∗ fT ∗ ∗ ∗ ∗ eT


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Discrete action for the double slice structure
The discrete action generalizes to

S(dbl)
dis = k (d)

1

T−1∑
t=0

(
S̃(dbl)

k (t) + S̃(dbl)
p (t)

)
+ ε (〈N4,1〉 − N4)2

Fair agreement with the data is yielded by the following kinetic term

S̃(dbl)
k (t) = −a

2(N4,1(t + 1)− N4,1(t))2

N4,1(t) + N4,1(t + 1)
+

2(ρN3,2(t + 1
2 )− N4,1(t))2

N4,1(t) + σN3,2(t + 1
2 )

+
2(N4,1(t)− ρN3,2(t − 1

2 ))2

σN3,2(t − 1
2 ) + N4,1(t)

and the intuitive potential term

S̃(dbl)
p (t) = −k̃11

2 N4,1(t)
1
3 + λ̃11N4,1(t)

+k̃22
2 N3,2(t + 1

2 )
1
3 − λ̃22N3,2(t + 1

2 )
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Reduction to the single structure ((4,1) simplices only)

Using one of two versions of Boltz-Banachiewicz inversion formula one
may retrieve P4,1 from Pdbl:

P4,1 =
(
(P11

dbl)
−1 + Cov12

dbl P3,2 (Cov12
dbl)

T)−1

Integrating out with some approximations (3,2) simplices we obtain
the single structure coupling constants from the double ones:

k1 = k (d)
1

(
− a +

ρ

ρ+ σ

)
,

k̃2 =
(
− k̃11

2 + ρ−
1
3 k̃22

2
) ρ+ σ

ρ− a(ρ+ σ)
,

λ̃ =
(
− λ̃11 + ρ−1 λ̃22) ρ+ σ

ρ− a(ρ+ σ)
,

which agrees fairly with the data
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Summary

Crucial points

In the CDT-model gravitational path integral is approximated by
the sum over causally well-behaving simplicial manifolds
After being Wick-rotated, the model for d = 4 has been explored
using numerical MC simulations
In one of the observed phases of CDT the semiclassical solution
emerges
The semiclassical description involves the discrete structure
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Outlook – the triple structure
The ultimate extension of the discrete framework includes all types of
simplices and due to the invariance under time inversion 〈N3,2(i+ 1

3 )〉 ≈
〈N2,3(i + 2

3 )〉 ≈ 1
2 〈N3,2(i + 1

2 )〉
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Figure: The joint distribution of 〈N4,1(i)〉, 2ρ〈N3,2(i + 1
3 )〉, 2ρ〈N2,3(i + 2

3 )〉 with
the classical solution fitted and the average quantum fluctuations
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