An Invitation to the New Variables with Possible Applications

Norbert Bodendorfer and Andreas Thurn
(work by NB, T. Thiemann, AT [arXiv:1106.1103])

FAU Erlangen-Nürnberg

QG Colloquium 6, 5 October 2011

Plan of the talk

(1) Why Higher Dimensional Loop Quantum (Super-)Gravity?
(2) Review: Hamiltonian Formulations of General Relativity

- ADM Formulation
- Extended ADM I
- Ashtekar-Barbero Formulation
- Extended ADM II
(3) The New Variables
- Hamiltonian Viewpoint
- Comparison with Ashtekar-Barbero Formulation
- Lagrangian Viewpoint
- Quantisation, Generalisations

4) Possible Applications of the New Variables

- Solutions to the Simplicity Constraint
- Canonical $=$ Covariant Formulation?
- Supersymmetry Constraint
- Black Hole Entropy
- Cosmology
- AdS / CFT Correspondence
(5) Conclusion

Plan of the talk

(1) Why Higher Dimensional Loop Quantum (Super-)Gravity?
(2) Review: Hamiltonian Formulations of General Relativity

- ADM Formulation
- Extended ADM I
- Ashtekar-Barbero Formulation
- Extended ADM II
(3) The New Variables
- Hamiltonian Viewpoint
- Comparison with Ashtekar-Barbero Formulation
- Lagrangian Viewpoint
- Quantisation, Generalisations
(4) Possible Applications of the New Variables
- Solutions to the Simplicity Constraint
- Canonical $=$ Covariant Formulation?
- Supersymmetry Constraint
- Black Hole Entropy
- Cosmology
- AdS / CFT Correspondence
(5. Conclusion

Why Higher Dimensional Loop Quantum (Super-)Gravity?

Quantum Gravity:

- Perturbative: Superstring theory / M-theory (ST / MT), require
- Additional particles
- Supersymmetry
- Higher dimensions
- Non-perturbative: Loop Quantum Gravity
- Various matter couplings \& SUSY possible
- 3+1 dimensions (Ashtekar Barbero variables) [however, Melosch, Nicolai '97; Nieto '04, '05]
- What if LHC finds evidence for higher dimensions?

Make contact between them? [Thiemann '04; Fairbairn, Noui, Sardelli '09, '10]

- Compare results in 3+1 dimensions: Landscape problem: Dimensional reduction of ST / MT highly ambiguous
- Compare results in higher dimensions: Starting points:
- Higher dimensional Supergravities
* are considered as the low-energy limits of ST / MT
\star have action of the type $S_{G R}+$ more
- Symmetry reduced models (higher dim. \& SUSY black holes or cosmology)
\rightarrow Extend loop quantisation programme to higher dimensions and Supergravities

Why Higher Dimensional Loop Quantum (Super-)Gravity?

Quantum Gravity:

- Perturbative: Superstring theory / M-theory (ST / MT), require
- Additional particles
- Supersymmetry
- Higher dimensions
- Non-perturbative: Loop Quantum Gravity
- Various matter couplings \& SUSY possible
- 3+1 dimensions (Ashtekar Barbero variables) [however, Melosch, Nicolai '97; Nieto '04, '05]
- What if LHC finds evidence for higher dimensions?
\rightarrow Make contact between them? [Thiemann '04; Fairbairn, Noui, Sardelli '09, '10]
- Compare results in 3+1 dimensions: Landscape problem: Dimensional reduction of ST / MT highly ambiguous
- Compare results in higher dimensions: Starting points:
- Higher dimensional Supergravities
\star are considered as the low-energy limits of ST / MT
\star have action of the type $S_{G R}+$ more
- Symmetry reduced models (higher dim. \& SUSY black holes or cosmology)

Extend loop quantisation programme to higher dimensions and Supergravities

Why Higher Dimensional Loop Quantum (Super-)Gravity?

Quantum Gravity:

- Perturbative: Superstring theory / M-theory (ST / MT), require
- Additional particles
- Supersymmetry
- Higher dimensions
- Non-perturbative: Loop Quantum Gravity
- Various matter couplings \& SUSY possible
- 3+1 dimensions (Ashtekar Barbero variables) [however, Melosch, Nicolai '97; Nieto '04, '05]
- What if LHC finds evidence for higher dimensions?
\rightarrow Make contact between them? [Thiemann '04; Fairbairn, Noui, Sardelli '09, '10]
- Compare results in $3+1$ dimensions: Landscape problem: Dimensional reduction of ST / MT highly ambiguous
- Compare results in higher dimensions: Starting points:
- Higher dimensional Supergravities
* are considered as the low-energy limits of ST / MT
\star have action of the type $S_{G R}+$ more
- Symmetry reduced models (higher dim. \& SUSY black holes or cosmology)
\rightarrow Extend loop quantisation programme to higher dimensions and Supergravities

Why Higher Dimensional Loop Quantum (Super-)Gravity?

Quantum Gravity:

- Perturbative: Superstring theory / M-theory (ST / MT), require
- Additional particles
- Supersymmetry
- Higher dimensions
- Non-perturbative: Loop Quantum Gravity
- Various matter couplings \& SUSY possible
- 3+1 dimensions (Ashtekar Barbero variables) [however, Melosch, Nicolai '97; Nieto '04, '05]
- What if LHC finds evidence for higher dimensions?
\rightarrow Make contact between them? [Thiemann '04; Fairbairn, Noui, Sardelli '09, '10]
- Compare results in $3+1$ dimensions: Landscape problem: Dimensional reduction of ST / MT highly ambiguous
- Compare results in higher dimensions: Starting points:
- Higher dimensional Supergravities
* are considered as the low-energy limits of ST / MT
\star have action of the type $S_{G R}+$ more
- Symmetry reduced models (higher dim. \& SUSY black holes or cosmology)
\rightarrow Extend loop quantisation programme to higher dimensions and Supergravities
[Jacobson '88; Fülöp '93; Armand-Ugon, Gambini, Obrégon, Pullin '95; Ling, Smolin '99-; Sawaguchi '01; Smotin '05,..ِㅡㄹ

Plan of the talk

(1) Why Higher Dimensional Loop Quantum (Super-)Gravity?
(2) Review: Hamiltonian Formulations of General Relativity

- ADM Formulation
- Extended ADM I
- Ashtekar-Barbero Formulation
- Extended ADM II
(3) The New Variables
- Hamiltonian Viewpoint
- Comparison with Ashtekar-Barbero Formulation
- Lagrangian Viewpoint
- Quantisation, Generalisations
(4.) Possible Applications of the New Variables
- Solutions to the Simplicity Constraint
- Canonical $=$ Covariant Formulation?
- Supersymmetry Constraint
- Black Hole Entropy
- Cosmology
- AdS / CFT Correspondence
(5) Conclusion

ADM Formulation [Arrowitt, Deser, Misnerer '62]

D+1 split

- Foliation of \mathcal{M} :
\mathcal{M} top. $\mathbb{R} \times \sigma, \quad \Sigma_{t}=X_{t}(\sigma), \quad X_{t}: \sigma \rightarrow \mathcal{M}$
- Important fields on σ :

Lapse, Shift: N, N^{a} Spatial metric $q_{a b}=\left(X^{*} g\right)_{a b}$,
Extrinsic curvature $K_{a b}=\left(X^{*} \mathcal{L}_{n} q\right)_{a b}$

$$
=\frac{1}{N}\left(\dot{q}_{a b}-\left(\mathcal{L}_{\vec{N}} q\right)_{a b}\right)
$$

$\Rightarrow S_{E H}=\int d t \int_{\sigma} d^{D} \times N \sqrt{\operatorname{det} q}\left(R^{(D)} \pm\left[K_{a b} K^{a b}-\left(K_{a}^{a}\right)^{2}\right]\right) \quad[a, b=1, \ldots, D]$

- Canonical variables: $q_{a b}, P^{a b}$ (\sim extrinsinc curvature $K_{a b}$)
- Poisson brackets:
- $1^{\text {st }}$ class constraints:

Totally constrained Hamiltonian: $H=\int_{\sigma} d^{D} \times\left(N \mathcal{H}+N^{2} \mathcal{H}_{a}\right)$
Spatial diffeomorphism constraint $\mathcal{H}_{a}(q, P)$
Hamiltonian constraint $\mathcal{H}(q, P)= \pm \sqrt{\operatorname{det} q} R^{(D)}+\frac{1}{\sqrt{\operatorname{det} q}}\left[P_{a b} P^{a b}-\frac{1}{D-1}\left(P_{a}^{a}\right)^{2}\right]$

ADM Formulation A Amanit, Deser, Miserer Bel

D+1 split

- Foliation of \mathcal{M} :
\mathcal{M} top. $\mathbb{R} \times \sigma, \quad \Sigma_{t}=X_{t}(\sigma), \quad X_{t}: \sigma \rightarrow \mathcal{M}$
- Important fields on σ :

Lapse, Shift: N, N^{a}
Spatial metric $q_{a b}=\left(X^{*} g\right)_{a b}$,
Extrinsic curvature $K_{a b}=\left(X^{*} \mathcal{L}_{n} q\right)_{a b}$

$$
=\frac{1}{N}\left(\dot{q}_{a b}-\left(\mathcal{L}_{\vec{N}} q\right)_{a b}\right)
$$

$\Rightarrow S_{E H}=\int d t \int_{\sigma} d^{D} \times N \sqrt{\operatorname{det} q}\left(R^{(D)} \pm\left[K_{a b} K^{a b}-\left(K_{a}{ }^{a}\right)^{2}\right]\right) \quad[a, b=1, \ldots, D]$

ADM phase space 「

- Canonical variables: $q_{a b}, P^{a b}$ (\sim extrinsinc curvature $K_{a b}$)
- Poisson brackets: $\left\{q_{a b}(x), P^{c d}(y)\right\}_{A D M}=\delta_{(a}^{c} \delta_{b)}^{d} \delta^{(D)}(x, y)$
- $1^{\text {st }}$ class constraints:

Totally constrained Hamiltonian: $H=\int_{\sigma} d^{D} \times\left(N \mathcal{H}+N^{a} \mathcal{H}_{a}\right)$
Spatial diffeomorphism constraint $\mathcal{H}_{a}(q, P)$
Hamiltonian constraint $\mathcal{H}(q, P)= \pm \sqrt{\operatorname{det} q} R^{(D)}+\frac{1}{\sqrt{\operatorname{det} q}}\left[P_{a b} P^{a b}-\frac{1}{D-1}\left(P_{a}{ }^{a}\right)^{2}\right]$

Extended ADM I

Extension of ADM phase space I

- Introduce $\mathrm{SO}(D)$-valued vielbein:

$$
\begin{equation*}
q_{a b}=e_{a}^{i} e_{b}^{j} \delta_{i j} \quad K_{a b}=K_{a i} e_{b}^{i} \quad E^{a i}=\sqrt{\operatorname{det} q} e^{a i} \quad i, j, \ldots \in\{1, \ldots, D\} \tag{1}
\end{equation*}
$$

- Poisson bracket relations: $\left\{E^{a i}, K_{b j}\right\}=\delta_{b}^{a} \delta_{j}^{i}$
- Increased number of degrees of freedoms \Rightarrow new constraint needed:

$$
\begin{equation*}
K_{[a b]}=0 \quad \Leftrightarrow \quad K_{[a}{ }^{i} e_{b] i}=0 \quad \Leftrightarrow \quad G_{i j}:=K_{a[i} E^{a}{ }_{j]}=0 \tag{2}
\end{equation*}
$$

- ADM Possion bracket relations reproduced on extended phase space

$$
\left.\left\{q_{a b}(E), P^{c d}(E, K)\right\}\right|_{G=0}=\left\{q_{a b}, P^{c d}\right\}_{A D M}=\delta_{(\delta b}^{c} \delta_{b}^{d} \delta^{(D)}(x, y)
$$

- New constraints close amongst themselves:
- qab $(E), D_{c d}(E, K)$ (and in particular $\mathcal{H}, \mathcal{H}_{a}$) are Dirac observables w.r.t. new constraint $G_{i j}$
$\mathcal{H}, \mathcal{H}_{a}$ and $G_{i j}$ constitute $1^{\text {st }}$ class constraint algebra by construction

Extended ADM I

Extension of ADM phase space I

- Introduce $\mathrm{SO}(D)$-valued vielbein:

$$
\begin{equation*}
q_{a b}=e_{a}{ }^{i} e_{b}^{j} \delta_{i j} \quad K_{a b}=K_{a i} e_{b}^{i} \quad E^{a i}=\sqrt{\operatorname{det} q} e^{a i} \quad i, j, \ldots \in\{1, \ldots, D\} \tag{1}
\end{equation*}
$$

- Poisson bracket relations: $\left\{E^{a i}, K_{b j}\right\}=\delta_{b}^{a} \delta_{j}^{i}$
- Increased number of degrees of freedoms \Rightarrow new constraint needed:

$$
\begin{equation*}
K_{[a b]}=0 \quad \Leftrightarrow \quad K_{[a}{ }^{i} e_{b] i}=0 \quad \Leftrightarrow \quad G_{i j}:=K_{a[i} E^{a}{ }_{j]}=0 \tag{2}
\end{equation*}
$$

Valid extension?

- ADM Possion bracket relations reproduced on extended phase space

$$
\begin{equation*}
\left.\left\{q_{a b}(E), P^{c d}(E, K)\right\}\right|_{G=0}=\left\{q_{a b}, P^{c d}\right\}_{A D M}=\delta_{(a}^{c} \delta_{b)}^{d} \delta^{(D)}(x, y) \tag{3}
\end{equation*}
$$

- New constraints close amongst themselves: $\{G, G\} \sim G$
- $q_{a b}(E), P_{c d}(E, K)$ (and in particular $\left.\mathcal{H}, \mathcal{H}_{a}\right)$ are Dirac observables w.r.t. new constraint $G_{i j}$
$\Rightarrow \mathcal{H}, \mathcal{H}_{a}$ and $G_{i j}$ constitute $1^{\text {st }}$ class constraint algebra by construction

Ashtekar-Barbero Formulation

Canonical transformation to Ashtekar-Barbero variables [Sen; Ashtekar; Immirzi; Barbero]

- Introduce spin connection $\Gamma_{a i j}^{S P I N}[e]$ s.t. $\partial_{a} e_{b i}-\Gamma_{a b}^{c} e_{c i}+\Gamma_{a i j}^{S P I N}[e] e_{b}^{j}=0$
- Crucial: Defining and adjoint representation of $\operatorname{SU}(2)$ equivalent!
- Only in $D=3$: Canonical transformation
$\left\{E^{a i}, K_{b j}\right\} \longrightarrow\left\{\frac{1}{\gamma} E^{a i}, A_{b j}:=1 / 2 \epsilon_{j}^{k l} \Gamma_{b k l}^{S P / N}[e]+\gamma K_{b j}\right\} \quad \gamma \in \mathbb{R} /\{0\}$: Immirrz Parameter
\Rightarrow Simple Poisson algebra $\{A, E\} \sim 1$ and $1^{\text {st }}$ class constraint algebra
- Canonicity of the above transformation non-trivial
- New constraint $G_{i j}=K_{\mathrm{a}[i} E^{a}{ }_{j]} \Rightarrow \operatorname{SU}(2)$ Gauß law constraint:

$$
\begin{align*}
G_{i j} & =\gamma K_{a l i} \frac{1}{\gamma} E^{a}{ }_{j]}+\frac{1}{2 \gamma} \epsilon_{i j}{ }^{k}\left(\partial_{a} E^{a}{ }_{k}+\Gamma_{a k l}^{S P I N}[e] E^{a l}\right) \\
& =\frac{1}{2 \gamma} \epsilon_{i j}{ }^{k}\left(\partial_{a} E^{a}{ }_{k}+\epsilon_{k}{ }^{l m} A_{a l} E^{a}{ }_{m}\right) \tag{5}
\end{align*}
$$

No obvious way of combining $K_{a i}$ and $\Gamma_{a i j}^{S P I N}[e]$ to a connection conjugate to $E^{b j}$ in a mathematically sensible way!

Ashtekar-Barbero Formulation

Canonical transformation to Ashtekar-Barbero variables [Sen; Ashtekar; Immirzi; Barbero]

- Introduce spin connection $\Gamma_{a i j}^{S P I N}[e]$ s.t. $\partial_{a} e_{b i}-\Gamma_{a b}^{c} e_{c i}+\Gamma_{a i j}^{S P I N}[e] e_{b}^{j}=0$
- Crucial: Defining and adjoint representation of $\operatorname{SU}(2)$ equivalent!
- Only in $D=3$: Canonical transformation
$\left\{E^{a i}, K_{b j}\right\} \longrightarrow\left\{\frac{1}{\gamma} E^{a i}, A_{b j}:=1 / 2 \epsilon_{j}^{k l} \Gamma_{b k l}^{S P I N}[e]+\gamma K_{b j}\right\} \quad \gamma \in \mathbb{R} /\{0\}:$ Immirzi Parameter
\Rightarrow Simple Poisson algebra $\{A, E\} \sim 1$ and $1^{\text {st }}$ class constraint algebra
- Canonicity of the above transformation non-trivial
- New constraint $G_{i j}=K_{\mathrm{a}[i} E^{a}{ }_{j]} \Rightarrow \operatorname{SU}(2)$ Gauß law constraint:

$$
\begin{align*}
G_{i j} & =\gamma K_{a l i} \frac{1}{\gamma} E^{a}{ }_{j]}+\frac{1}{2 \gamma} \epsilon_{i j}{ }^{k}\left(\partial_{a} E^{a}{ }_{k}+\Gamma_{a k l}^{S P I N}[e] E^{a l}\right) \\
& =\frac{1}{2 \gamma} \epsilon_{i j}{ }^{k}\left(\partial_{a} E^{a}{ }_{k}+\epsilon_{k}{ }^{l m} A_{a l} E^{a}{ }_{m}\right) \tag{5}
\end{align*}
$$

Higher dimensions?

No obvious way of combining $K_{a i}$ and $\Gamma_{a i j}^{S P I N}[e]$ to a connection conjugate to $E^{b j}$ in a mathematically sensible way!

Extended ADM II

Extension of ADM phase space II

- Introduce $\mathrm{SO}(D+1)$ or $\mathrm{SO}(1, D)$ "hybrid" vielbein:

$$
\begin{equation*}
q_{a b}=e_{a}^{J} e_{b}^{J} \eta_{I J} \quad K_{a b}=K_{a J} e_{b}^{J} \quad E^{a J}=\sqrt{\operatorname{det} q} e^{a J} \quad 1, J, \ldots \in\{0,1, \ldots, D\} \tag{6}
\end{equation*}
$$

- Motivation: $2^{\text {nd }}$ order Palatini formulation of General Relativity
- Poisson bracket relations: $\left\{E^{a l}, K_{b J}\right\}=\delta_{b}^{a} \delta_{J}^{\prime}$
- New constraints: $K_{[a b]}=0 \Leftrightarrow K_{[a}{ }^{\prime} e_{b]!}=0$ insufficient! Use

$$
\begin{equation*}
\Leftarrow \quad G^{I J}:=K_{a}^{[I} E^{a J]} \tag{7}
\end{equation*}
$$

- Proof of validity of extension II analogous to extension I case
\square

Extended ADM II

Extension of ADM phase space II

- Introduce $\mathrm{SO}(D+1)$ or $\mathrm{SO}(1, D)$ "hybrid" vielbein:

$$
\begin{equation*}
q_{a b}=e_{a}^{\prime} e_{b}^{J} \eta_{I J} \quad K_{a b}=K_{a J} e_{b}^{J} \quad E^{a J}=\sqrt{\operatorname{det} q} e^{a J} \quad I, J, \ldots \in\{0,1, \ldots, D\} \tag{6}
\end{equation*}
$$

- Motivation: $2^{\text {nd }}$ order Palatini formulation of General Relativity
- Poisson bracket relations: $\left\{E^{a l}, K_{b J}\right\}=\delta_{b}^{a} \delta_{J}^{\prime}$
- New constraints: $K_{[a b]}=0 \quad \Leftrightarrow \quad K_{[a}{ }^{\prime} e_{b] l}=0$ insufficient! Use

$$
\begin{equation*}
\Leftarrow \quad G^{I J}:=K_{a}^{[I} E^{a J]} \tag{7}
\end{equation*}
$$

- Proof of validity of extension II analogous to extension I case

Connection formulation?

- "Hybrid" spin connection [Peldan $\left.{ }^{9} 94\right] \Gamma_{a / J}^{H Y B}[e]$ s.t. $\partial_{a} e_{b l}-\Gamma_{a b}^{c} e_{c l}+\Gamma_{a l / J}^{H Y B}[e] e_{b}^{J}=0$
- BUT: No obvious way of combining $K_{a J}$ and $\Gamma_{a / J}^{H Y B}[e]$ to a connection conjugate to $E^{b J}$ in a mathematically sensible way (if $D \neq 2$)!

Plan of the talk

(1) Why Higher Dimensional Loop Quantum (Super-)Gravity?
(2) Review: Hamiltonian Formulations of General Relativity

- ADM Formulation
- Extended ADM I
- Ashtekar-Barbero Formulation
- Extended ADM II
(3) The New Variables
- Hamiltonian Viewpoint
- Comparison with Ashtekar-Barbero Formulation
- Lagrangian Viewpoint
- Quantisation, Generalisations

Possible Applications of the New Variables

- Solutions to the Simplicity Constraint
- Canonical $=$ Covariant Formulation?
- Supersymmetry Constraint
- Black Hole Entropy
- Cosmology
- AdS / CFT Correspondence
(5) Conclusion

The New Variables - Hamiltonian Viewpoint

Extension of ADM phase space III

- Introduce "generalised" vielbein, transforming in the adjoint representation of $\mathrm{SO}(D+1)$ or $\operatorname{SO}(1, D)$:

$$
\begin{equation*}
q_{a b}=e_{a l J} e_{b}^{I J} \quad K_{a b}=K_{a I J} e_{b}^{I J} \quad \pi^{a l J}=\sqrt{\operatorname{det} q} e^{a l J} \quad I, J, \ldots \in\{0,1, \ldots, D\} \tag{8}
\end{equation*}
$$

- Motivation: $1^{\text {st }}$ order Palatini formulation of General Relativity (cf. next to next slide)
- Poisson bracket relations: $\quad\left\{\pi^{a l J}, K_{b K L}\right\}=\delta_{b}^{a} \delta_{[K}^{l} \delta_{L]}^{J}$
- New constraints: Gauß and simplicity constraint

$$
\begin{equation*}
G^{I J}:=K_{a}\left[| | K \pi^{a} K^{J]} \quad \text { and } \quad S^{a l J} b K L \quad:=\pi^{a[I J \mid} \pi^{b \mid K L]}\right. \tag{9}
\end{equation*}
$$

- Proof of validity of extension analogous to extension I and II case
- $\Gamma_{a / J}^{H Y B}[\pi]$: Extension of $\Gamma_{a / J}^{H Y B}[e]$ off the simplicity constraint surface
- Canonical transformation (non-trivial)
- $G^{l /}$ becomes $\mathrm{SO}(D+1)$ or $\mathrm{SO}(1, D)$ Gauß law constraint:
- Formulation works with $\mathrm{SO}(D+1)$ and $\mathrm{SO}(1, D)$ independent of spacetime signature!

The New Variables - Hamiltonian Viewpoint

Extension of ADM phase space III

- Introduce "generalised" vielbein, transforming in the adjoint representation of $\mathrm{SO}(D+1)$ or $\operatorname{SO}(1, D)$:

$$
\begin{equation*}
q_{a b}=e_{a l J} e_{b}^{I J} \quad K_{a b}=K_{a I J} e_{b}^{I J} \quad \pi^{a l J}=\sqrt{\operatorname{det} q} e^{a l J} \quad I, J, \ldots \in\{0,1, \ldots, D\} \tag{8}
\end{equation*}
$$

- Motivation: $1^{\text {st }}$ order Palatini formulation of General Relativity (cf. next to next slide)
- Poisson bracket relations: $\left\{\pi^{a l J}, K_{b K L}\right\}=\delta_{b}^{a} \delta_{[K}^{l} \delta_{L]}^{J}$
- New constraints: Gauß and simplicity constraint

$$
\begin{equation*}
G^{I J}:=K_{a}\left[I \mid K \pi^{a} K^{J]} \quad \text { and } \quad S^{a l J} b K L:=\pi^{a[I J \mid} \pi^{b \mid K L]}\right. \tag{9}
\end{equation*}
$$

- Proof of validity of extension analogous to extension I and II case

Canonical transformation to new connection formulation

- $\Gamma_{a / J}^{H Y B}[\pi]$: Extension of $\Gamma_{a / J}^{H Y B}[e]$ off the simplicity constraint surface

$$
\begin{equation*}
S=0 \Leftrightarrow \pi^{a l J}=n^{[I} E^{a \mid J]} \quad[\text { Freidel, Krasnov, Puzio '99] } \tag{10}
\end{equation*}
$$

- Canonical transformation (non-trivial):

$$
\begin{equation*}
\left\{\pi^{a / J}, K_{b K L}\right\} \longrightarrow\left\{\frac{1}{\beta} \pi^{a / J}, A_{b K L}:=\Gamma_{b K L}^{H Y B}[\pi]+\beta K_{b K L}\right\} \quad \beta \in \mathbb{R} /\{0\}, \neq \gamma! \tag{11}
\end{equation*}
$$

- $G^{I J}$ becomes $\mathrm{SO}(D+1)$ or $\mathrm{SO}(1, D)$ Gauß law constraint:

$$
\begin{equation*}
G^{I J}=\partial_{a} \pi^{a l J}+A_{a}{ }^{[I \mid}{ }_{K} \pi^{a K \mid J]} \tag{12}
\end{equation*}
$$

- Formulation works with $\mathrm{SO}(D+1)$ and $\mathrm{SO}(1, D)$ independent of spacetime signature!

Comparison with Ashtekar-Barbero Formulation

Ashtekar-Barbero formulation

- Canonical variables $A_{a j}^{L Q G}, E^{b k}$ are real
- Simple Poisson algebra $\left\{A^{L Q G}, E\right\} \sim 1$
- Compact gauge group $\operatorname{SU}(2)$
- First class constraints $\mathcal{H}, \mathcal{H}_{a}$ and G^{i}
- Physical information:

$$
\begin{equation*}
A_{a i j}^{L Q G}-\Gamma_{a i j}^{S P I N}[e]=\gamma \epsilon_{i j}{ }^{k} K_{a k} \tag{13}
\end{equation*}
$$

- Relation to other formulations: $A B \xrightarrow{G=0}$ ADM

New formulation, $D=3$

- Canonical variables $A_{a l J}^{N E W}, \pi^{b K L}$ are real
- Simple Poisson algebra $\left\{A^{N E W}, \pi\right\} \sim 1$
- Compact gauge group $\mathrm{SO}(4)$
- First class constraints $\mathcal{H}, \mathcal{H}_{a}, G^{I J}$ and $S^{a l J} b K L$
- Physical information:

$$
\begin{equation*}
A_{a i j}^{N E W}-\Gamma_{a i j}^{H Y B}[\pi] \approx S-\text { gauge }, \quad A_{a 0 j}^{N E W}-\Gamma_{a 0 j}^{H Y B}[\pi] \approx \beta K_{a j} \tag{14}
\end{equation*}
$$

- NEW $\xrightarrow{S=0}$ Ex. ADM II $\xrightarrow{\text { time gauge }}$ Ex. ADM I $\xrightarrow{G=0}$ ADM

The New Variables - Lagrangian Viewpoint

Canonical analysis of the $1^{\text {st }}$ order Palatini action [Peldan '94]

$$
\begin{equation*}
S_{P}=\int\left(\pi^{a l J} \dot{A}_{a l J}-N \mathcal{H}-N^{a} \mathcal{H}_{a}-\Lambda \cdot G-c \cdot S\right) \tag{15}
\end{equation*}
$$

- Gauß and simplicity constraint: Exactly like before
- Dirac constraint analysis: Additional constraint D, second class partner to S
- $A_{\text {alJ }}$ not self-commuting w.r.t. corresponding Dirac bracket [Alexandrov '00]
\Rightarrow Loop quantisation not (directly) applicable! [see, however: Alexandrov \& Roche '10;
- Well defined procedure: $2^{\text {nd }}$ class $\Rightarrow 1^{\text {st }}$ class constrained system
- Applied to GR: Drop D at the cost of a more complicated \mathcal{H}
- Resulting theory coincides with result of Hamiltonian derivation iff

Internal and external signatures match
Free parameter $\beta=1$

The New Variables - Lagrangian Viewpoint

Canonical analysis of the $1^{\text {st }}$ order Palatini action [Peldan '94]

$$
\begin{equation*}
S_{P}=\int\left(\pi^{a l J} \dot{A}_{a l J}-N \mathcal{H}-N^{a} \mathcal{H}_{a}-\Lambda \cdot G-c \cdot S\right) \tag{15}
\end{equation*}
$$

- Gauß and simplicity constraint: Exactly like before
- Dirac constraint analysis: Additional constraint D, second class partner to S
- $A_{\text {alJ }}$ not self-commuting w.r.t. corresponding Dirac bracket [Alexandrov '00]
\Rightarrow Loop quantisation not (directly) applicable! [see, however: Alexandrov \& Roche '10;

Gauge Unfixing [Mitra \& Rajaraman '89 '90; Henneaux \& Teitelboim '92; Anishetty \& Vytheeswaran '93]

- Well defined procedure: $2^{\text {nd }}$ class $\Rightarrow 1^{\text {st }}$ class constrained system
- Applied to GR: Drop D at the cost of a more complicated \mathcal{H}
- Resulting theory coincides with result of Hamiltonian derivation iff

Internal and external signatures match
Free parameter $\beta=1$

Quantisation, Generalisations

Quantisation [Rovelli, Smolin, Ashtekar, Isham, Lewandoski, Marolf, Mourao, Thiemann...]

- Most results of loop quantisation formulated independently of

Dimension of spacetime
Choice of compact gauge group

- Sole new ingredient for canonical theory: Implementation of simplicity constraint (but well-known from covariant approach, cf. below)
- Extension to diverse matter fields and supergravity:

Dirac, Weyl, Majorana fermions
Gauge fields with compact gauge groups
Scalar fields
Rarita-Schwinger fields (gravitinos)
Abelian higher p-form fields

- Not treatable so far:

Non-ahelian higher p-form fields (higher gauge theory?)
Non-compact gauge groups
\Rightarrow Includes, inter alia, supergravity theories in 4, 10 and 11 dimensions

Quantisation, Generalisations

Quantisation [Rovelli, Smolin, Ashtekar, Isham, Lewandoski, Marolf, Mourao, Thiemann...]

- Most results of loop quantisation formulated independently of

Dimension of spacetime
Choice of compact gauge group

- Sole new ingredient for canonical theory: Implementation of simplicity constraint (but well-known from covariant approach, cf. below)

Generalisations

- Extension to diverse matter fields and supergravity:

Dirac, Weyl, Majorana fermions
Gauge fields with compact gauge groups
Scalar fields
Rarita-Schwinger fields (gravitinos)
Abelian higher p-form fields

- Not treatable so far:

Non-abelian higher p-form fields (higher gauge theory?)
Non-compact gauge groups
\Rightarrow Includes, inter alia, supergravity theories in 4, 10 and 11 dimensions

Plan of the talk

(1) Why Higher Dimensional Loop Quantum (Super-)Gravity?

Review: Hamiltonian Formulations of General Relativity

- ADM Formulation
- Extended ADM I
- Ashtekar-Barbero Formulation
- Extended ADM II

The New Variables

- Hamiltonian Viewpoint
- Comparison with Ashtekar-Barbero Formulation
- Lagrangian Viewpoint
- Quantisation, Generalisations
(4) Possible Applications of the New Variables
- Solutions to the Simplicity Constraint
- Canonical $=$ Covariant Formulation?
- Supersymmetry Constraint
- Black Hole Entropy
- Cosmology
- AdS / CFT Correspondence

Solutions to the Simplicity Constraint

There exist multiple, plausible suggestions for solving the simplicity constraint, e.g.

- Weak implementation [Engle, Pereirra, Rovelli '07; Livine, Speziale '07]
- Coherent states [Freidel, Krasnov '07]
- Holomorphic simplicity constraints [Dupuis, Freidel, Livine, Speziale '11]
- Maximally commuting subsets [NB, Thiemann, AT '11]
- ...

It is however in general unclear, if they lead to the same dynamics.

Application of the new variables

- Test different implementations of the simplicity constraint within the new canonical framework for dynamical equivalence
- New requirement: Anomaly-freedom of the constraint algebra including the Hamiltonian constraint, i.e. implement

$$
\begin{equation*}
\{S[\ldots], H[N]\}=S[\ldots] \quad \rightarrow \quad[\hat{S}, \hat{H}]=\hat{S} \tag{16}
\end{equation*}
$$

Canonical $=$ Covariant Formulation?

Basic idea: The spinfoam provides a rigging map for the Hamiltonian constraint.

$$
\begin{equation*}
\langle\phi \mid \psi\rangle_{\text {phys }}=\sum_{\kappa: \psi \rightarrow \phi} Z[\kappa] \tag{17}
\end{equation*}
$$

New question

For which canonical quantisation should we test the above equation?

Are the quantum theories based on the Ashtekar-Barbero and the newly proposed variables equivalent?

Ashtekar-Barbero	New variables
simplicity solved classically	simplicity can be quantised
\Rightarrow Hilbert spaces have to be related	\Rightarrow Hilbert spaces are the same
usual Hamiltonian constraint	Hamiltonian constraint more complicated
\Rightarrow calculations "easier"	\Rightarrow calculations "harder"

Supersymmetry Constraint

Important open problem:
Understand the solution space of the Hamiltonian constraint, including matter.

Hint from Supergravity: Super Dirac algebra

[Teitelboim '77]

$$
\begin{equation*}
\{\mathcal{S}, \mathcal{S}\}=H+H_{a}+\mathcal{S}, \quad \mathcal{S}: \text { supersymmetry constraint } \tag{18}
\end{equation*}
$$

Assuming an anomaly-free implementation of the super Dirac algebra:
Solution to the supersymmetry constraint operator \Downarrow
Solution to the Hamiltonian constraint operator
\rightarrow Supergravity as a simplified version of General Relativity coupled to matter

Important progress with implementing the supersymmetry constraint has been made in the $\operatorname{GSU}(2)$ framework. [Armand-Ugon, Gambini, Obrégon, Pullin '95]

Comparing LQG to other Approaches to Quantum Gravity

General considerations

- Supergravity has been extensively studied as a low energy limit of String- / M-theory
- A great deal of "technology" has been developed in order to deal with String- / M-theory and Supergravity

Comparing LQG to String- / M-theory

- Dimensional reduction to 4 dimensions is not unique \rightarrow Work in the natural dimensions of String- / M-theory
- Generic calculations are hard both in LQG and String- / M-theory \rightarrow Work in symmetry reduced situations

Black Hole Entropy

Calculation of black hole entropy

- Thermodynamic analogy [Bekenstein '73]; QFTCS [Hawking '74]
- String theory [Strominger, Vafa; ... '96]
- Loop quantum gravity [Krasnov '96; Rovelli 96'; Ashtekar, Baez, Corichi, Krasnov '97-, ...]

$$
\Rightarrow \text { Calculation possible in different theories! }
$$

Application of the new variables

- Calculate entropy of a supersymmetric extremal black hole in higher dimensions
- Compare to results coming from string theory

Cosmology

Cosmology from different points of view

- Wheeler-DeWitt quantum cosmology [Wheeler '64-; DeWitt '67; Misner '69]
- String cosmology [Veneziano; ... '91]
- Loop quantum cosmology [Bojowald '01-, Ashtekar, Kaminski, Lewandowski, Pawlowski, Singh, ... '02-]

$$
\Rightarrow \text { Calculation possible in different theories! }
$$

Application of the new variables

- Investigate SLQC in higher dimensions
- Compare to results coming from string cosmology and possibly from experiments
\rightarrow hints of higher dimensions and supersymmetry in cosmological observables?

AdS / CFT Correspondence

Conjectured exact equivalence

Type IIB String Theory on $\mathrm{AdS}^{5} \times \mathrm{S}^{5}$

String coupling g_{s}, String tension T

$$
\begin{gathered}
4 \pi g_{s}=g_{\mathrm{YM}}^{2} \\
T=\frac{1}{2 \pi} \sqrt{g_{\mathrm{YM}}^{2} N}
\end{gathered}
$$

$\mathcal{N}=4$ Super Yang-Mills Theory in 4d

YM coupling $g_{Y M}$, number of coulors N

- weak string coupling
- strong string tension (only massless states)
- weak YM-coupling
- strong 't-Hooft coupling (only planar diagrams)

Well tested low energy equivalence

Type IIB Supergravity

$$
\begin{array}{cc}
\\
\text { in } \mathrm{AdS}^{5} \times \mathrm{S}^{5} & 4 \pi g_{s}=g_{\mathrm{YM}}^{2} \\
g_{s} \rightarrow 0, \quad T \rightarrow \infty & T=\frac{1}{2 \pi} \sqrt{g_{\mathrm{YM}}^{2} N}
\end{array}
$$

$\mathcal{N}=4$ Super Yang-Mills Theory in 4d
at strong 't Hooft coupling

$$
g_{\mathrm{YM}} \rightarrow 0, \quad g_{\mathrm{YM}}^{2} N \rightarrow \infty
$$

AdS / CFT Correspondence

Conjectured exact equivalence

Type IIB String Theory on $A d S^{5} \times S^{5}$

String coupling g_{s}, String tension T

$\mathcal{N}=4$ Super Yang-Mills Theory in 4d

YM coupling g_{YM}, number of coulors N

New non-perturbative limit?

Loop quantized
Type IIB Supergravity (in $\mathrm{AdS}^{5} \times \mathrm{S}^{5}$?)

$$
g_{s}=?, \quad T=?
$$

$$
\begin{gathered}
\mathcal{N}=4 \text { Super Yang-Mills } \\
\text { Theory in } 4 d
\end{gathered}
$$

$$
g_{Y M}=?, \quad g_{Y M}^{2} N=?
$$

Well tested low energy equivalence

Type IIB Supergravity in $\mathrm{AdS}^{5} \times \mathrm{S}^{5}$

$$
g_{s} \rightarrow 0, \quad T \rightarrow \infty
$$

$$
\mathcal{N}=4 \text { Super Yang-Mills }
$$

Theory in $4 d$
at strong 't Hooft coupling

$$
g_{\mathrm{YM}} \rightarrow 0, \quad g_{\mathrm{YM}}^{2} N \rightarrow \infty
$$

Plan of the talk

(1) Why Higher Dimensional Loop Quantum (Super-)Gravity?
(2) Review: Hamiltonian Formulations of General Relativity

- ADM Formulation
- Extended ADM I
- Ashtekar-Barbero Formulation
- Extended ADM II
(3) The New Variables
- Hamiltonian Viewpoint
- Comparison with Ashtekar-Barbero Formulation
- Lagrangian Viewpoint
- Quantisation, Generalisations
(4) Possible Applications of the New Variables
- Solutions to the Simplicity Constraint
- Canonical $=$ Covariant Formulation?
- Supersymmetry Constraint
- Black Hole Entropy
- Cosmology
- AdS / CFT Correspondence

(5) Conclusion

Conclusion

- $D+1$ dim. GR formulated on an $\mathrm{SO}(D+1)$ Yang-Mills phase space
- LQG methods apply \rightarrow rigorous quantisation exists
- Extensions to interesting Supergravities exist
- Possible applications include
- Better understanding the simplicity constraint
- Supergravity as "simplified" matter coupled GR
- Higher dimensional (supersymmetric) black hole entropy
- Higher dimensional (supersymmetric) quantum cosmology
- New tests / applications of the AdS/CFT correspondence?

Thank you for your attention!

