

An Invitation to the New Variables with Possible Applications

Norbert Bodendorfer and Andreas Thurn (work by NB, T. Thiemann, AT [arXiv:1106.1103])

FAU Erlangen-Nürnberg

QG Colloquium 6, 5 October 2011

Plan of the talk

- 1 Why Higher Dimensional Loop Quantum (Super-)Gravity?
- 2 Review: Hamiltonian Formulations of General Relativity
 - ADM Formulation
 - Extended ADM I
 - Ashtekar-Barbero Formulation
 - Extended ADM II
- The New Variables
 - Hamiltonian Viewpoint
 - Comparison with Ashtekar-Barbero Formulation
 - Lagrangian Viewpoint
 - Quantisation, Generalisations
- 4 Possible Applications of the New Variables
 - Solutions to the Simplicity Constraint
 - Canonical = Covariant Formulation?
 - Supersymmetry Constraint
 - Black Hole Entropy
 - Cosmology
 - AdS / CET Corresponder
 - AdS / CFT Correspondence
 - Conclusion

Plan of the talk

- Why Higher Dimensional Loop Quantum (Super-)Gravity?
- 2 Review: Hamiltonian Formulations of General Relativity
 - ADM Formulation
 - Extended ADM I
 - Ashtekar-Barbero Formulation
 - Extended ADM II
- The New Variables
 - Hamiltonian Viewpoint
 - Comparison with Ashtekar-Barbero Formulation
 - Lagrangian Viewpoint
 - Quantisation, Generalisations
 - Possible Applications of the New Variables
 - Solutions to the Simplicity Constraint
 - Canonical = Covariant Formulation?
 - Supersymmetry Constraint
 - Black Hole Entropy
 - Black Hole Entropy
 - Cosmology
 - AdS / CFT Correspondence
 - Conclusion

Why Higher Dimensional Loop Quantum (Super-)Gravity? Quantum Gravity:

- Perturbative: Superstring theory / M-theory (ST / MT), require
 - Additional particles
 - Supersymmetry
 - Higher dimensions
- Non-perturbative: Loop Quantum Gravity
 - Various matter couplings & SUSY possible
 - ▶ 3+1 dimensions (Ashtekar Barbero variables) [however, Melosch, Nicolai '97; Nieto '04, '05]
 - What if LHC finds evidence for higher dimensions?
- ightarrow Make contact between them? [Thiemann '04; Fairbairn, Noui, Sardelli '09, '10]
 - Compare results in 3+1 dimensions:
 Landscape problem: Dimensional reduction of ST / MT highly ambiguous
 - Compare results in higher dimensions: Starting points:
 - Higher dimensional Supergravities
 - ★ are considered as the low-energy limits of ST / MT
 - \star have action of the type S_{GR} + more
 - Symmetry reduced models (higher dim. & SUSY black holes or cosmology)
- → Extend loop quantisation programme to higher dimensions and Supergravities

 [Jacobson '88: Fülöp '93; Armand-Ugon, Gambini, Obrégon, Pullin '95; Ling, Smolin 'ஐ9, Sayaggychi 'இ1, Smolin', Obrégon, Pullin '95; Ling, Smolin', 'ஐ9, Sayaggychi 'இ1, Smolin', 'இ9, Sayaggychi 'இ1, Smolin', 'B9, Sayaggychi '@1, Smolin', 'B9, Sayaggychi 'B1, Smolin', 'B9, Sayaggychi '@1, Smolin', 'B9, Sayaggychi 'B1, Smolin', 'B1, Smoli

Why Higher Dimensional Loop Quantum (Super-)Gravity? Quantum Gravity:

- Perturbative: Superstring theory / M-theory (ST / MT), require
 - Additional particles
 - Supersymmetry
 - Higher dimensions
- Non-perturbative: Loop Quantum Gravity
 - Various matter couplings & SUSY possible
 - ▶ 3+1 dimensions (Ashtekar Barbero variables) [however, Melosch, Nicolai '97; Nieto '04, '05]
 - What if LHC finds evidence for higher dimensions?
- → Make contact between them? [Thiemann '04; Fairbairn, Noui, Sardelli '09, '10]
 - Compare results in 3+1 dimensions:
 Landscape problem: Dimensional reduction of ST / MT highly ambiguous
 - Compare results in higher dimensions: Starting points:
 - Higher dimensional Supergravities
 - ★ are considered as the low-energy limits of ST / MT
 - \star have action of the type S_{GR} + more
 - Symmetry reduced models (higher dim. & SUSY black holes or cosmology)
- → Extend loop quantisation programme to higher dimensions and Supergravities

 [Jacobson '88: Fülöp '93; Armand-Ugon, Gambini, Obrégon, Pullin '95; Ling, Smolin 'ஐர் தெய்தும் 'இரு நெல்தா,'05... ்

Why Higher Dimensional Loop Quantum (Super-)Gravity? Quantum Gravity:

- Perturbative: Superstring theory / M-theory (ST / MT), require
 - Additional particles
 - Supersymmetry
 - Higher dimensions
- Non-perturbative: Loop Quantum Gravity
 - Various matter couplings & SUSY possible
 - ▶ 3+1 dimensions (Ashtekar Barbero variables) [however, Melosch, Nicolai '97; Nieto '04, '05]
 - What if LHC finds evidence for higher dimensions?
- → Make contact between them? [Thiemann '04; Fairbairn, Noui, Sardelli '09, '10]
 - Compare results in 3+1 dimensions: Landscape problem: Dimensional reduction of ST / MT highly ambiguous
 - Compare results in higher dimensions: Starting points:
 - Higher dimensional Supergravities
 - ★ are considered as the low-energy limits of ST / MT
 - \star have action of the type S_{GR} + more
 - Symmetry reduced models (higher dim. & SUSY black holes or cosmology)
- [Jacobson '88; Fülöp '93; Armand-Ugon, Gambini, Obrégon, Pullin '95; Ling, Smolin '89; Sawagychi '91; Smolin '05,...]

Why Higher Dimensional Loop Quantum (Super-)Gravity? Quantum Gravity:

- Perturbative: Superstring theory / M-theory (ST / MT), require
 - Additional particles
 - Supersymmetry
 - Higher dimensions
- Non-perturbative: Loop Quantum Gravity
 - Various matter couplings & SUSY possible
 - ▶ 3+1 dimensions (Ashtekar Barbero variables) [however, Melosch, Nicolai '97; Nieto '04, '05]
 - What if LHC finds evidence for higher dimensions?
- → Make contact between them? [Thiemann '04; Fairbairn, Noui, Sardelli '09, '10]
 - Compare results in 3+1 dimensions: Landscape problem: Dimensional reduction of ST / MT highly ambiguous
 - Compare results in higher dimensions: Starting points:
 - Higher dimensional Supergravities
 - ★ are considered as the low-energy limits of ST / MT
 - \star have action of the type S_{GR} + more
 - Symmetry reduced models (higher dim. & SUSY black holes or cosmology)
- → Extend loop quantisation programme to higher dimensions and Supergravities

Plan of the talk

- 1 Why Higher Dimensional Loop Quantum (Super-)Gravity?
- 2 Review: Hamiltonian Formulations of General Relativity
 - ADM Formulation
 - Extended ADM I
 - Ashtekar-Barbero Formulation
 - Extended ADM II
- The New Variables
 - Hamiltonian Viewpoint
 - Comparison with Ashtekar-Barbero Formulation
 - Lagrangian Viewpoint
 - Quantisation, Generalisations
- 4 Possible Applications of the New Variables
 - Solutions to the Simplicity Constraint
 - Canonical = Covariant Formulation?
 - Supersymmetry Constraint
 - Black Hole Entropy
 - Cosmology
 - AdS / CFT Correspondence
 - Conclusion

ADM Formulation [Arnowitt, Deser, Misner '62]

D+1 split

• Foliation of \mathcal{M} :

$$\mathcal{M}$$
 top. $\mathbb{R} \times \sigma$, $\Sigma_t = X_t(\sigma)$, $X_t : \sigma \to \mathcal{M}$

• Important fields on σ : Lapse, Shift: N, N^a

Spatial metric
$$q_{ab} = (X^*g)_{ab}$$
,

Extrinsic curvature
$$K_{ab} = (X^* \mathcal{L}_n q)_{ab}$$

= $\frac{1}{N} (\dot{q}_{ab} - (\mathcal{L}_{\vec{N}} q)_{ab})$

$$\Sigma_{t_{d}}$$

$$\Sigma_{t_{d}}$$

$$\Sigma_{t_{d}}$$

$$\Sigma_{t_{d}}$$

$$\Sigma_{t_{d}}$$

$$\Sigma_{t_{d}}$$

$$\Sigma_{t_{d}}$$

$$\Sigma_{t_{d}}$$

$$\Rightarrow S_{EH} = \int dt \int_{\sigma} d^{D}x \ N\sqrt{\det q} \left(R^{(D)} \pm \left[K_{ab} K^{ab} - \left(K_{a}^{a} \right)^{2} \right] \right) \quad [a, b = 1, ..., D]$$

- Canonical variables: q_{ab} , P^{ab} (\sim extrinsing curvature K_{ab})
- Poisson brackets: $\{q_{ab}(x), P^{cd}(y)\}_{ADM} = \delta^c_{(a}\delta^d_{b)}\delta^{(D)}(x,y)$
- 1st class constraints:

ADM Formulation [Arnowitt, Deser, Misner '62]

D+1 split

- Foliation of \mathcal{M} :
 - \mathcal{M} top. $\mathbb{R} \times \sigma$, $\Sigma_t = X_t(\sigma)$. $X_t : \sigma \to \mathcal{M}$
- Important fields on σ : Lapse, Shift: N, N^a

Spatial metric $q_{ab} = (X^*g)_{ab}$,

Extrinsic curvature $K_{ab} = (X^* \mathcal{L}_n q)_{ab}$ $=\frac{1}{N}(\dot{q}_{ab}-(\mathcal{L}_{\vec{N}}q)_{ab})$

$$\Rightarrow S_{EH} = \int dt \int_{\sigma} d^{D}x \ N\sqrt{\det q} \left(R^{(D)} \pm \left[K_{ab} K^{ab} - \left(K_{a}^{a} \right)^{2} \right] \right) \quad [a, b = 1, ..., D]$$

ADM phase space Γ

- Canonical variables: q_{ab} , P^{ab} (\sim extrinsing curvature K_{ab})
- Poisson brackets: $\{q_{ab}(x), P^{cd}(y)\}_{ADM} = \delta^c_{(a}\delta^d_{b)}\delta^{(D)}(x,y)$
- 1st class constraints:

Totally constrained Hamiltonian: $H = \int_{\sigma} d^{D}x(N\mathcal{H} + N^{a}\mathcal{H}_{a})$ Spatial diffeomorphism constraint $\mathcal{H}_a(q, P)$

Hamiltonian constraint $\mathcal{H}(q, P) = \pm \sqrt{\det q} \ R^{(D)} + \frac{1}{\sqrt{\det q}} [P_{ab}P^{ab} - \frac{1}{D-1}(P_a^a)^2]$

Extended ADM I

Extension of ADM phase space I

• Introduce SO(D)-valued vielbein:

- Poisson bracket relations: $\{E^{ai}, K_{bj}\} = \delta^a_b \delta^i_j$
- Increased number of degrees of freedoms ⇒ new constraint needed:

$$K_{[ab]} = 0 \quad \Leftrightarrow \quad K_{[a}{}^{i}e_{b]i} = 0 \quad \Leftrightarrow \quad G_{ij} := K_{a[i}E^{a}{}_{j]} = 0 \tag{2}$$

Valid extension?

ADM Possion bracket relations reproduced on extended phase space

$$\{q_{ab}(E), P^{cd}(E, K)\}|_{G=0} = \{q_{ab}, P^{cd}\}_{ADM} = \delta^{c}_{(a}\delta^{d}_{b)}\delta^{(D)}(x, y)$$
(3)

- New constraints close amongst themselves: $\{G,G\} \sim G$
- $q_{ab}(E), P_{cd}(E, K)$ (and in particular $\mathcal{H}, \mathcal{H}_a$) are Dirac observables w.r.t. new constraint G_{ii}
- $\Rightarrow~\mathcal{H},\mathcal{H}_{\mathsf{a}}$ and G_{ij} constitute 1^{st} class constraint algebra by construction

Extended ADM I

Extension of ADM phase space I

• Introduce SO(D)-valued vielbein:

$$q_{ab} = e_a{}^i e_b{}^j \delta_{ij}$$
 $K_{ab} = K_{ai} e_b^i$ $E^{ai} = \sqrt{\det q} e^{ai}$ $i, j, ... \in \{1, ..., D\}$ (1)

- Poisson bracket relations: $\{E^{ai}, K_{bj}\} = \delta^a_b \delta^i_j$
- Increased number of degrees of freedoms ⇒ new constraint needed:

$$K_{[ab]} = 0 \quad \Leftrightarrow \quad K_{[a}{}^{i}e_{b]i} = 0 \quad \Leftrightarrow \quad G_{ij} := K_{a[i}E^{a}{}_{j]} = 0 \tag{2}$$

Valid extension?

ADM Possion bracket relations reproduced on extended phase space

$$\{q_{ab}(E), P^{cd}(E, K)\}|_{G=0} = \{q_{ab}, P^{cd}\}_{ADM} = \delta^{c}_{(a}\delta^{d}_{b)}\delta^{(D)}(x, y)$$
(3)

- New constraints close amongst themselves: $\{G,G\} \sim G$
- $q_{ab}(E)$, $P_{cd}(E,K)$ (and in particular \mathcal{H} , \mathcal{H}_a) are Dirac observables w.r.t. new constraint G_{ij}
- \Rightarrow $\mathcal{H}, \mathcal{H}_{a}$ and \textit{G}_{ij} constitute 1^{st} class constraint algebra by construction

Ashtekar-Barbero Formulation

Canonical transformation to Ashtekar-Barbero variables [Sen; Ashtekar; Immirzi; Barbero]

- Introduce spin connection $\Gamma^{SPIN}_{aij}[e]$ s.t. $\partial_a e_{bi} \Gamma^c_{ab} e_{ci} + \Gamma^{SPIN}_{aij}[e]$ $e_b{}^j = 0$
- Crucial: Defining and adjoint representation of SU(2) equivalent!
- Only in D = 3: Canonical transformation

$$\{E^{ai}, K_{bj}\} \longrightarrow \{\frac{1}{\gamma}E^{ai}, A_{bj} := 1/2 \epsilon_j^{kl} \Gamma_{bkl}^{SPIN}[e] + \gamma K_{bj}\} \qquad \gamma \in \mathbb{R}/\{0\}: \text{ Immirzi Parameter}$$
 (4)

- \Rightarrow Simple Poisson algebra $\{A,E\}\sim 1$ and 1^{st} class constraint algebra
- Canonicity of the above transformation non-trivial
- New constraint $G_{ij} = K_{a[i}E^{a}{}_{j]} \Rightarrow SU(2)$ Gauß law constraint:

$$G_{ij} = \gamma K_{a[i} \frac{1}{\gamma} E^{a}{}_{j]} + \frac{1}{2\gamma} \epsilon_{ij}{}^{k} (\partial_{a} E^{a}{}_{k} + \Gamma^{SPIN}_{akl}[e] E^{al})$$

$$= \frac{1}{2\gamma} \epsilon_{ij}{}^{k} (\partial_{a} E^{a}{}_{k} + \epsilon_{k}{}^{lm} A_{al} E^{a}{}_{m})$$
(5)

Higher dimensions?

No obvious way of combining K_{ai} and $\Gamma_{aij}^{SPIN}[e]$ to a connection conjugate to E^{bj} in a mathematically sensible way!

Ashtekar-Barbero Formulation

Canonical transformation to Ashtekar-Barbero variables [Sen; Ashtekar; Immirzi; Barbero]

- Introduce spin connection $\Gamma^{SPIN}_{aij}[e]$ s.t. $\partial_a e_{bi} \Gamma^c_{ab} e_{ci} + \Gamma^{SPIN}_{aij}[e]$ $e_b{}^j = 0$
- Crucial: Defining and adjoint representation of SU(2) equivalent!
- Only in D = 3: Canonical transformation

$$\{E^{ai}, K_{bj}\} \longrightarrow \{\frac{1}{\gamma}E^{ai}, A_{bj} := 1/2 \epsilon_j^{kl} \Gamma_{bkl}^{SPIN}[e] + \gamma K_{bj}\} \qquad \gamma \in \mathbb{R}/\{0\}: \text{ Immirzi Parameter}$$
 (4)

- \Rightarrow Simple Poisson algebra $\{A,E\}\sim 1$ and 1^{st} class constraint algebra
 - Canonicity of the above transformation non-trivial
 - New constraint $G_{ij} = K_{a[i}E^{a}_{j]} \Rightarrow SU(2)$ Gauß law constraint:

$$G_{ij} = \gamma K_{a[i} \frac{1}{\gamma} E^{a}_{j]} + \frac{1}{2\gamma} \epsilon_{ij}^{\ k} (\partial_{a} E^{a}_{\ k} + \Gamma^{SPIN}_{akl}[e] E^{al})$$

$$= \frac{1}{2\gamma} \epsilon_{ij}^{\ k} (\partial_{a} E^{a}_{\ k} + \epsilon_{k}^{\ lm} A_{al} E^{a}_{\ m})$$
(5)

Higher dimensions?

No obvious way of combining K_{ai} and $\Gamma^{SPIN}_{aij}[e]$ to a connection conjugate to E^{bj} in a mathematically sensible way!

Extended ADM II

Extension of ADM phase space II

• Introduce SO(D+1) or SO(1,D) "hybrid" vielbein:

$$q_{ab} = e_a{}^I e_b{}^J \eta_{IJ}$$
 $K_{ab} = K_{aJ} e_b^J$ $E^{aJ} = \sqrt{\det q} e^{aJ}$ $I, J, ... \in \{0, 1, ..., D\}$ (6)

- Motivation: 2nd order Palatini formulation of General Relativity
- Poisson bracket relations: $\{E^{al}, K_{bJ}\} = \delta^a_b \delta^l_J$
- New constraints: $K_{[ab]} = 0 \Leftrightarrow K_{[a}{}^{I}e_{b]I} = 0$ insufficient! Use $\Leftrightarrow G^{IJ} := K_{a}{}^{[I}E^{aJ]}$ (7)
- Proof of validity of extension II analogous to extension I case

Connection formulation?

- "Hybrid" spin connection [Peldan '94] $\Gamma_{aIJ}^{HYB}[e]$ s.t. $\partial_a e_{bI} \Gamma_{ab}^c e_{cI} + \Gamma_{aIJ}^{HYB}[e]$ $e_b{}^J = 0$
- BUT: No obvious way of combining K_{aJ} and $\Gamma_{aIJ}^{HYB}[e]$ to a connection conjugate to E^{bJ} in a mathematically sensible way (if $D \neq 2$)!

Extended ADM II

Extension of ADM phase space II

• Introduce SO(D+1) or SO(1,D) "hybrid" vielbein:

$$q_{ab} = e_a{}^I e_b{}^J \eta_{IJ}$$
 $K_{ab} = K_{aJ} e_b^J$ $E^{aJ} = \sqrt{\det q} e^{aJ}$ $I, J, ... \in \{0, 1, ..., D\}$ (6)

- Motivation: 2nd order Palatini formulation of General Relativity
- Poisson bracket relations: $\{E^{al}, K_{bJ}\} = \delta^a_b \delta^l_J$
- New constraints: $K_{[ab]} = 0 \Leftrightarrow K_{[a}{}^{I}e_{b]I} = 0$ insufficient! Use $\Leftrightarrow G^{IJ} := K_{a}{}^{[I}E^{aJ]}$ (7)
- Proof of validity of extension II analogous to extension I case

Connection formulation?

- $\qquad \text{``Hybrid'' spin connection [Peldan '94] $\Gamma_{aJJ}^{HYB}[e]$ s.t. } \quad \partial_a e_{bJ} \Gamma_{ab}^c e_{cJ} + \Gamma_{aJJ}^{HYB}[e]$ $e_b{}^J = 0$ }$
- BUT: No obvious way of combining K_{aJ} and $\Gamma_{alJ}^{HYB}[e]$ to a connection conjugate to E^{bJ} in a mathematically sensible way (if $D \neq 2$)!

Plan of the talk

- 1 Why Higher Dimensional Loop Quantum (Super-)Gravity?
- 2 Review: Hamiltonian Formulations of General Relativity
 - ADM Formulation
 - Extended ADM I
 - Ashtekar-Barbero Formulation
 - Extended ADM II
- The New Variables
 - Hamiltonian Viewpoint
 - Comparison with Ashtekar-Barbero Formulation
 - Lagrangian Viewpoint
 - Quantisation, Generalisations
- Possible Applications of the New Variables
 - Solutions to the Simplicity Constraint
 - Canonical = Covariant Formulation?
 - Supersymmetry Constraint
 - Black Hole Entropy
 - Cosmology
 - AdS / CFT Correspondence
- Conclusion

The New Variables - Hamiltonian Viewpoint

Extension of ADM phase space III

• Introduce "generalised" vielbein, transforming in the adjoint representation of SO(D+1) or SO(1,D):

$$q_{ab} = e_{alJ}e_b^{\ IJ}$$
 $K_{ab} = K_{alJ}e_b^{\ IJ}$ $\pi^{alJ} = \sqrt{\det q} \ e^{alJ}$ $I, J, ... \in \{0, 1, ..., D\}$ (8)

- Motivation: 1st order Palatini formulation of General Relativity (cf. next to next slide)
- Poisson bracket relations: $\{\pi^{alJ}, K_{bKL}\} = \delta^a_b \ \delta^I_{[K} \delta^J_{L]}$
- New constraints: Gauß and simplicity constraint

$$G^{IJ} := K_a^{[I|K} \pi^a_{K}^{J]}$$
 and $S^{aIJ\ bKL} := \pi^{a[IJ|} \pi^{b|KL]}$ (9)

Proof of validity of extension analogous to extension I and II case

Canonical transformation to new connection formulation

• $\Gamma^{HYB}_{alJ}[\pi]$: Extension of $\Gamma^{HYB}_{alJ}[e]$ off the simplicity constraint surface

$$S = 0 \Leftrightarrow \pi^{alJ} = n^{[l} E^{a|J]}$$
 [Freidel, Krasnov, Puzio '99] (10)

• Canonical transformation (non-trivial):

$$\{\pi^{\mathsf{a}IJ}, K_{\mathsf{bKL}}\} \longrightarrow \{\frac{1}{\beta}\pi^{\mathsf{a}IJ}, A_{\mathsf{bKL}} := \Gamma^{\mathsf{HYB}}_{\mathsf{bKL}}[\pi] + \beta K_{\mathsf{bKL}}\} \quad \beta \in \mathbb{R}/\{0\}, \neq \gamma!$$
 (11)

ullet G^{IJ} becomes SO(D+1) or SO(1, D) Gauß law constraint:

$$^{IJ} = \partial_a \pi^{aIJ} + A_a^{[I]} \kappa \pi^{aK[J]}$$
 (12)

• Formulation works with SO(D+1) and SO(1,D) independent of spacetime signature!

The New Variables - Hamiltonian Viewpoint

Extension of ADM phase space III

• Introduce "generalised" vielbein, transforming in the adjoint representation of SO(D+1)or SO(1, D):

$$q_{ab} = e_{alJ}e_b^{\ IJ}$$
 $K_{ab} = K_{alJ}e_b^{\ IJ}$ $\pi^{alJ} = \sqrt{\det q} \ e^{alJ}$ $I, J, ... \in \{0, 1, ..., D\}$ (8)

- Motivation: 1st order Palatini formulation of General Relativity (cf. next to next slide)
- Poisson bracket relations: $\{\pi^{alJ}, K_{bKL}\} = \delta^a_b \delta^I_{lK} \delta^J_{l1}$
- New constraints: Gauß and simplicity constraint

$$G^{IJ} := K_a^{[I|K} \pi^a_K^{J]} \quad \text{and} \quad S^{aIJ\ bKL} := \pi^{a[IJ|} \pi^{b|KL]}$$

$$\tag{9}$$

Proof of validity of extension analogous to extension I and II case

Canonical transformation to new connection formulation

• $\Gamma_{2II}^{HYB}[\pi]$: Extension of $\Gamma_{2II}^{HYB}[e]$ off the simplicity constraint surface

$$S = 0 \Leftrightarrow \pi^{alJ} = n^{[l} E^{a|J]}$$
 [Freidel, Krasnov, Puzio '99] (10)

Canonical transformation (non-trivial):

$$\{\pi^{aIJ}, K_{bKL}\} \longrightarrow \{\frac{1}{\beta}\pi^{aIJ}, A_{bKL} := \Gamma^{HYB}_{bKL}[\pi] + \beta K_{bKL}\} \qquad \beta \in \mathbb{R}/\{0\}, \neq \gamma!$$
(11)

• G^{IJ} becomes SO(D+1) or SO(1,D) Gauß law constraint:

$$G^{IJ} = \partial_{a} \pi^{aIJ} + A_{a}^{[I]}{}_{K} \pi^{aK[J]}$$

$$\tag{12}$$

• Formulation works with SO(D+1) and SO(1,D) independent of spacetime signature!

Comparison with Ashtekar-Barbero Formulation

Ashtekar-Barbero formulation

- Canonical variables A_{ai}^{LQG} , E^{bk} are real
- Simple Poisson algebra $\{A^{LQG}, E\} \sim 1$
- Compact gauge group SU(2)
- First class constraints $\mathcal{H}, \mathcal{H}_a$ and G^i
- Physical information:

$$A_{aij}^{LQG} - \Gamma_{aij}^{SPIN}[e] = \gamma \epsilon_{ij}^{k} K_{ak}$$
 (13)

• Relation to other formulations: AB $\stackrel{G=0}{\longrightarrow}$ ADM

New formulation, D = 3

- Canonical variables A_{alJ}^{NEW} , π^{bKL} are real
- Simple Poisson algebra $\{A^{\it NEW},\pi\}\sim 1$
- Compact gauge group SO(4)
- First class constraints $\mathcal{H}, \mathcal{H}_a, G^{IJ}$ and $S^{aIJ\ bKL}$
- Physical information:

$$A_{aij}^{NEW} - \Gamma_{aij}^{HYB}[\pi] \approx S - gauge, \qquad A_{a0j}^{NEW} - \Gamma_{a0j}^{HYB}[\pi] \approx \beta K_{aj}$$
 (14)

 $\bullet \ \ \mathsf{NEW} \ \ \stackrel{S=0}{\longrightarrow} \ \ \mathsf{Ex.} \ \ \mathsf{ADM} \ \mathsf{II} \ \ \stackrel{\mathsf{time\ gauge}}{\longrightarrow} \ \ \mathsf{Ex.} \ \ \mathsf{ADM} \ \mathsf{I} \ \ \stackrel{G=0}{\longrightarrow} \ \ \mathsf{ADM}$

The New Variables - Lagrangian Viewpoint

Canonical analysis of the 1st order Palatini action [Peldan '94]

$$S_{P} = \int \left(\pi^{aIJ} \ \dot{A}_{aIJ} - N\mathcal{H} - N^{a}\mathcal{H}_{a} - \Lambda \cdot G - c \cdot S \right) \tag{15}$$

- Gauß and simplicity constraint: Exactly like before
- ullet Dirac constraint analysis: Additional constraint D, second class partner to S
- A_{alJ} not self-commuting w.r.t. corresponding Dirac bracket [Alexandrov '00]
- ⇒ Loop quantisation not (directly) applicable! [see, however: Alexandrov & Roche '10;

Geiller, Lachieze-Rey, Noui, Sardelli '11]

Gauge Unfixing [Mitra & Rajaraman '89 '90; Henneaux & Teitelboim '92; Anishetty & Vytheeswaran '93]

- Well defined procedure: 2^{nd} class \Rightarrow 1^{st} class constrained system
- ullet Applied to GR: Drop D at the cost of a more complicated ${\cal H}$
- Resulting theory coincides with result of Hamiltonian derivation iff
 - Internal and external signatures match
 - Free parameter $\beta = 1$

The New Variables - Lagrangian Viewpoint

Canonical analysis of the 1st order Palatini action [Peldan '94]

$$S_{P} = \int \left(\pi^{alJ} \dot{A}_{alJ} - N\mathcal{H} - N^{a}\mathcal{H}_{a} - \Lambda \cdot G - c \cdot S \right)$$
 (15)

- Gauß and simplicity constraint: Exactly like before
- ullet Dirac constraint analysis: Additional constraint D, second class partner to S
- A_{alJ} not self-commuting w.r.t. corresponding Dirac bracket [Alexandrov '00]
- ⇒ Loop quantisation not (directly) applicable! [see, however: Alexandrov & Roche '10;

Geiller, Lachieze-Rey, Noui, Sardelli '11]

Gauge Unfixing [Mitra & Rajaraman '89 '90; Henneaux & Teitelboim '92; Anishetty & Vytheeswaran '93]

- ullet Well defined procedure: 2^{nd} class \Rightarrow 1^{st} class constrained system
- ullet Applied to GR: Drop D at the cost of a more complicated ${\cal H}$
- Resulting theory coincides with result of Hamiltonian derivation iff
 - Internal and external signatures match
 - Free parameter $\beta = 1$

Quantisation, Generalisations

Quantisation [Rovelli, Smolin, Ashtekar, Isham, Lewandoski, Marolf, Mourao, Thiemann...]

- Most results of loop quantisation formulated independently of
 - Dimension of spacetime
 - Choice of compact gauge group
- Sole new ingredient for canonical theory: Implementation of simplicity constraint (but well-known from covariant approach, cf. below)

Generalisations

- Extension to diverse matter fields and supergravity:
 - Dirac, Weyl, Majorana fermions
 - Gauge fields with compact gauge groups
 - Scalar fields
 - Rarita-Schwinger fields (gravitinos)
 - Abelian higher *p*-form fields
- Not treatable so far:
 - Non-abelian higher *p*-form fields (higher gauge theory?)
 - Non-compact gauge groups
- ⇒ Includes, inter alia, supergravity theories in 4, 10 and 11 dimensions

Quantisation, Generalisations

Quantisation [Rovelli, Smolin, Ashtekar, Isham, Lewandoski, Marolf, Mourao, Thiemann...]

- Most results of loop quantisation formulated independently of
 - Dimension of spacetime
 - Choice of compact gauge group
- Sole new ingredient for canonical theory: Implementation of simplicity constraint (but well-known from covariant approach, cf. below)

Generalisations

- Extension to diverse matter fields and supergravity:
 - Dirac, Weyl, Majorana fermions
 - Gauge fields with compact gauge groups
 - Scalar fields
 - Rarita-Schwinger fields (gravitinos)
 - Abelian higher p-form fields
- Not treatable so far:
 - Non-abelian higher p-form fields (higher gauge theory?)
 - Non-compact gauge groups
- ⇒ Includes, inter alia, supergravity theories in 4, 10 and 11 dimensions

Plan of the talk

- Why Higher Dimensional Loop Quantum (Super-)Gravity?
- 2 Review: Hamiltonian Formulations of General Relativity
 - ADM Formulation
 - Extended ADM I
 - Ashtekar-Barbero Formulation
 - Extended ADM II
- The New Variables
 - Hamiltonian Viewpoint
 - Comparison with Ashtekar-Barbero Formulation
 - Lagrangian Viewpoint
 - Quantisation, Generalisations
- 4 Possible Applications of the New Variables
 - Solutions to the Simplicity Constraint
 - Canonical = Covariant Formulation?
 - Supersymmetry Constraint
 - Black Hole Entropy
 - Cosmology
 - AdS / CFT Correspondence
 - Conclusion

Solutions to the Simplicity Constraint

There exist multiple, plausible suggestions for solving the simplicity constraint, e.g.

- Weak implementation [Engle, Pereirra, Rovelli '07; Livine, Speziale '07]
- Coherent states [Freidel, Krasnov '07]
- Holomorphic simplicity constraints [Dupuis, Freidel, Livine, Speziale '11]
- Maximally commuting subsets [NB, Thiemann, AT '11]
- ...

It is however in general unclear, if they lead to the same dynamics.

Application of the new variables

- Test different implementations of the simplicity constraint within the new canonical framework for dynamical equivalence
- New requirement: Anomaly-freedom of the constraint algebra including the Hamiltonian constraint, i.e. implement

$$\{S[...], H[N]\} = S[...] \rightarrow \left[\hat{S}, \hat{H}\right] = \hat{S}$$
 (16)

Basic idea: The spinfoam provides a rigging map for the Hamiltonian constraint.

$$\langle \phi \mid \psi \rangle_{\text{phys}} = \sum_{\kappa: \psi \to \phi} Z[\kappa]$$
 (17)

New question

For which canonical quantisation should we test the above equation?

Are the quantum theories based on the Ashtekar-Barbero and the newly proposed variables equivalent?

Ashtekar-Barbero	New variables
simplicity solved classically	simplicity can be quantised
\Rightarrow Hilbert spaces have to be related	\Rightarrow Hilbert spaces are the same
usual Hamiltonian constraint	Hamiltonian constraint more complicated
⇒ calculations "easier"	⇒ calculations "harder"

Supersymmetry Constraint

Important open problem:

Understand the solution space of the Hamiltonian constraint, including matter.

[Teitelboim '77]

$$\{S,S\} = H + H_a + S,$$
 S: supersymmetry constraint (18)

Assuming an anomaly-free implementation of the super Dirac algebra:

Solution to the supersymmetry constraint operator

\$\\$\\$\\$\$
Solution to the Hamiltonian constraint operator

ightarrow Supergravity as a simplified version of General Relativity coupled to matter

Important progress with implementing the supersymmetry constraint has been made in the GSU(2) framework. [Armand-Ugon, Gambini, Obrégon, Pullin '95]

Comparing LQG to other Approaches to Quantum Gravity

General considerations

- Supergravity has been extensively studied as a low energy limit of String- / M-theory
- A great deal of "technology" has been developed in order to deal with String- / M-theory and Supergravity

Comparing LQG to String- / M-theory

- Dimensional reduction to 4 dimensions is not unique
 - ightarrow Work in the natural dimensions of String- / M-theory
- Generic calculations are hard both in LQG and String- / M-theory
 - → Work in symmetry reduced situations

Black Hole Entropy

Calculation of black hole entropy

- Thermodynamic analogy [Bekenstein '73]; QFTCS [Hawking '74]
- String theory [Strominger, Vafa; ... '96]
- Loop quantum gravity [Krasnov '96; Rovelli 96'; Ashtekar, Baez, Corichi, Krasnov '97-, ...]

 $\Rightarrow {\sf Calculation\ possible\ in\ different\ theories!}$

Application of the new variables

- Calculate entropy of a supersymmetric extremal black hole in higher dimensions
- Compare to results coming from string theory

Cosmology

Cosmology from different points of view

- Wheeler-DeWitt quantum cosmology [Wheeler '64-; DeWitt '67; Misner '69]
- String cosmology [Veneziano; ... '91]
- Loop quantum cosmology [Bojowald '01-, Ashtekar, Kaminski, Lewandowski, Pawlowski, Singh, ... '02-]

 $\Rightarrow {\sf Calculation\ possible\ in\ different\ theories!}$

Application of the new variables

- Investigate SLQC in higher dimensions
- Compare to results coming from string cosmology and possibly from experiments
 - ightarrow hints of higher dimensions and supersymmetry in cosmological observables?

Conjectured exact equivalence

Type IIB String Theory on $AdS^5 \times S^5$

String coupling g_s , String tension T

 $\mathcal{N}=$ 4 Super Yang-Mills Theory in 4d

YM coupling gym, number of coulors N

- weak string coupling
- strong string tension (only massless states)

- weak YM-coupling
- strong 't-Hooft coupling (only planar diagrams)

Well tested low energy equivalence

Type IIB Supergravity in AdS⁵xS⁵

$$g_s \to 0$$
, $T \to \infty$

 $\mathcal{N}=4$ Super Yang-Mills Theory in 4dat strong 't Hooft coupling

$$g_{\mathsf{YM}} \to 0$$
, $g_{\mathsf{YM}}^2 N \to \infty$

Conjectured exact equivalence

Type IIB String Theory on AdS⁵xS⁵

String coupling g_s , String tension T

$$4\pi g_{S} = g_{YM}^{2}$$

$$T = \frac{1}{2\pi} \sqrt{g_{YM}^{2} N}$$

 $\mathcal{N}=$ 4 Super Yang-Mills Theory in 4d

YM coupling g_{YM} , number of coulors N

New non-perturbative limit?

Loop quantized Type IIB Supergravity (in AdS⁵xS⁵?)

$$g_s = ?, \quad T = ?$$

 $\mathcal{N}=$ 4 Super Yang-Mills Theory in 4d

$$g_{YM} = ?$$
, $g_{YM}^2 N = ?$

Well tested low energy equivalence

Type IIB Supergravity in AdS⁵xS⁵

$$g_s \to 0$$
, $T \to \infty$

 $\mathcal{N}=$ 4 Super Yang-Mills Theory in 4d at strong 't Hooft coupling

$$g_{YM} \rightarrow 0$$
, $g_{YM}^2 N \rightarrow \infty$

Plan of the talk

- Why Higher Dimensional Loop Quantum (Super-)Gravity?
- 2 Review: Hamiltonian Formulations of General Relativity
 - ADM Formulation
 - Extended ADM I
 - Ashtekar-Barbero Formulation
 - Extended ADM II
- The New Variables
 - Hamiltonian Viewpoint
 - Comparison with Ashtekar-Barbero Formulation
 - Lagrangian Viewpoint
 - Quantisation, Generalisations
 - Possible Applications of the New Variables
 - Solutions to the Simplicity Constraint
 - Canonical = Covariant Formulation?
 - Supersymmetry Constraint
 - Black Hole Entropy
 - Cosmology
 - AdS / CFT Correspondence
 - Conclusion

Conclusion

- ullet D + 1 dim. GR formulated on an SO(D + 1) Yang-Mills phase space
- ullet LQG methods apply o rigorous quantisation exists
- Extensions to interesting Supergravities exist
- Possible applications include
 - Better understanding the simplicity constraint
 - Supergravity as "simplified" matter coupled GR
 - ► Higher dimensional (supersymmetric) black hole entropy
 - Higher dimensional (supersymmetric) quantum cosmology
 - New tests / applications of the AdS/CFT correspondence?
 - Thank you for your attention!