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Intro BM Canonical BM SD Comments

Introduction

Forget about Lorentz invariance and spacetime! Can we still get gravity?

Observation

All measurements of lengths are local comparisons

∴ we expect that experiments are invariant under gab → eφ(x)gab.

This simple idea leads to shape dynamics a new...

approach to GR free of the local problem of time.

symmetry principle of quantum gravity.

approach to perturbative cosmology.

view on gauge/gravity duality.
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Outline

1 Will describe a procedure implementing Mach’s principles.

2 Will use this to construct shape dynamics.

3 Will describe recent results / hopes.
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Mach’s principles

Idea

The dynamics of observable quantities should depend only on other observable
quantities and no other external structures.

1 “When we say that a body K alters its direction and velocity solely
through the influence of another body K ′, we have inserted a conception
that is impossible to come at unless other bodies A, B, C ... are present
with reference to which the motion of the body K has been estimated.”

2 “It is utterly beyond our power to measure the changes of things by time.
Quite the contrary, time is an abstraction, at which we arrive by means of
the changes of things... ”
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Best matching: general idea

Goal

Find the “distance” between shapes.
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2 steps:
1 Bring to “best–matched” position giving difference in shape (ie, metric).
⇒ constraints linear in momenta.

2 Dynamics: geodesic principle in shape space.
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Gauge theory on configuration space (Mach’s first principle)

Establish ontology:

Identify configuration space A.

Identify symmetry group G.

Best matching connection

Best–matching procedure: choice of section on fibre bundle.

Variation wrt best–matching connection → linear constraints ptαq ≈ 0.
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Mach’s second principle and geodesics

Dynamics

Geodesic principle on base space.

Eg,

S =

∫
dt
√

Gab(q)q̇aq̇b

Geodesics

Specified by point and direction.
∴ length of momenta is irrelevant.

⇒ quadratic constraints: G abpapb − 1 ≈ 0

Time: length of curve (slightly different metric).
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Example: standard GR from BM

Fibre Bundle

Configuration space: Riem3 ≡ space of all 3–metrics, gab.

Gauge group: Diff3

Base space: Superspace = Riem / Diff

Can be made into PFB by removing g ’s with global isometries [Gomes ’11].

Best–matching constraints: ptαq → gabLNaπab (after I by P)

Local geodesic: G abpapa − 1 = 0→ Gabcd

g(R−2Λ)
πabπcd − 1 = 0.

∴ GR ∼ gauge theory on Riem with a local geodesic principle on Superspace!

3 + 1 has its own beauty!
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Canonical best matching

Matching procedure ∼ canonical transformation on phase space

Procedure:

Start with first class Hamiltonian system: (Γ(q, p),H ≈ 0,Hi ≈ 0, χj ≈ 0)

Enlarge phase space Γ(q, p)→ Γe(q, φ; p, πφ).

Introduce constraint πφ ≈ 0. (first class)

Perform canonical transformation T :

F (q, φ;P,Πφ) =

∫
dt
(
Peφq + φΠφ

)
⇒ q → eφq and πφ → πφ − ptq.

Impose best–matching constraint πφ ≈ 0.

3 cases

1 πφ ≈ 0 first class: standard gauge theory.

2 πφ ≈ 0 second class: fix Lagrange multiplier.

3 πφ ≈ 0 second class: secondary constraints.
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Shape dynamics: construction

Construct linking theory

1 Start with local geodesic principle on ADM phase space:
(Γ(gab, π

ab),S(N) ≈ 0)

2 BM diffeos gab → gab + Lξgab.

3 Diffeo constraint H(ξ) ≈ 0 is first class. ∴ case 1.

4 BM vpcts: gab → e4φ̂gab.

5 Vpct constraints D(ρ) are second class wrt S(N). ∴ case 2.

Partial gauge fixing of S(N)

Note: Vol preserving condition → global restriction on D(ρ).

∴ Decompose S = SCMC + S̃

S̃ ≡ part of S that is second class wrt to D!
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Shape dynamics: linking theory

S(N) ≈ 0
ADM

H(ξ) ≈ 0

Linking Theory

C(ρ) ≈ 0

Shape dynamics
H   ≈ 0gl

D(ρ)  ≈ 0

Dictionary

π  = 0φ φ = 0

π  = 0φ

φ=0

N = N oρ = 0

Phase space reduction

TS(N) ≈ 0
TH(ξ) ≈ 0

H(ξ) ≈ 0

H   ≈ 0 H(ξ) ≈ 0gl
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Shape dynamics basics: ADM phase space

φ̂

Definition of Hgl

Hgl(g , π) = SCMC(Tφg ,Tφπ)

Notes:

S̃ = part of S gauge fixed by
D = 0.

Foliation invariance is traded
for vpct.

Intersection: CMC (soap
bubbles).
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Large volume expansion

Problem

The equation
Hgl = S(Tφg ,Tφπ)

is a non–linear elliptic PDE (because TφR = e−4φ̂

(
R − 8∇

2(eφ̂)

eφ̂

)
).

∴ Hgl is non–local!

Perturbative expansion

Hgl =
∑
n

V−nH(n)
gl

Solve the PDE order by order in 1/V :

Hgl =

(
2Λ− 1

6
〈π〉2

)
+ . . .
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dS/CFT correspondence

Large V : Hgl + D(x) ≈ 0→ gabπ
ab ≈ ±

√
12Λ!

∴ full (inhomogeneous) conformal constraints!

dS/CFT correspondence

Semi–classical: SHJ ∼ ZCFT ∴ HJ eq’n ∼ Conformal Ward identity

We can repeat standard Holographic RG cals ⇒ easier in SD.

Potential construction principle for shape dynamics!?
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Current projects / discussions

Perturbative SD: perts about a background and cosmo pert theory.

Matter coupling.

Ashtekar variables + LQSD

Connection with AdS/CFT.

New variables: conformal Cartan connections (slide).
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Conformal Cartan connection

Motivation

Ashtekar connection → ugly under vpcts!!

Find variables that transform trivially under vpcts.

Idea: Find frame fields, e Ia that give the metric only up to a conformal factor

gab = e4φe Iae
I
b.

Thus:

e Ia ∈ fund rep of conformal group SO(4, 1).

Connection AIJ
a ∈ SO(4, 1) valued 1–form.

Advantages:

Ham of linking theory is naturally written in these variables and F (A).

Natural physical Hilbert space: conformal spinnets (conformal nets??).

SO(4, 1) isometry group of (Euclidean) AdS → AdS/CFT
correspondence?!
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