Shape dynamics:

The conformal backbone of general relativity

Sean Gryb

Universiteit Utrecht

Institute for Theoretical Physics, Utrecht University

Grafiti no. 226 ITF, Utrecht University Oct 10, 2011

Introduction

Forget about Lorentz invariance and spacetime! Can we still get gravity?

Observation

All measurements of lengths are local comparisons

 \therefore we expect that experiments are invariant under $g_{ab} o e^{\phi(\mathsf{x})} g_{ab}$.

This simple idea leads to shape dynamics a new...

- approach to GR free of the *local* problem of time.
- symmetry principle of quantum gravity.
- approach to perturbative cosmology.
- view on gauge/gravity duality.

Outline

- Will describe a procedure implementing Mach's principles.
- Will use this to construct shape dynamics.
- Will describe recent results / hopes.

Mach's principles

Idea

The dynamics of observable quantities should depend only on other observable quantities and no other external structures.

- "When we say that a body K alters its direction and velocity solely through the influence of another body K', we have inserted a conception that is impossible to come at unless other bodies A, B, C... are present with reference to which the motion of the body K has been estimated."
- "It is utterly beyond our power to measure the changes of things by time. Quite the contrary, time is an abstraction, at which we arrive by means of the changes of things..."

Best matching: general idea

Goal

Find the "distance" between shapes.

2 steps:

- Bring to "best-matched" position giving difference in shape (ie, metric).
 ⇒ constraints linear in momenta.
- 2 Dynamics: geodesic principle in shape space.

Gauge theory on configuration space (Mach's first principle)

Establish ontology:

- Identify configuration space A.
- Identify symmetry group G.

Best matching connection

- Best-matching procedure: choice of section on fibre bundle.
- Variation wrt best–matching connection \rightarrow linear constraints $pt_{\alpha}q \approx 0$.

Utrecht

Mach's second principle and geodesics

Dynamics

Geodesic principle on base space.

Eg,

$$S = \int dt \sqrt{G_{ab}(q) \dot{q}^a \dot{q}^b}$$

Geodesics

Specified by point and direction.

: length of momenta is irrelevant.

 \Rightarrow quadratic constraints: $G^{ab}p_ap_b-1\approx 0$

Time: length of curve (slightly different metric).

Example: standard GR from BM

Fibre Bundle

- Configuration space: Riem³ \equiv space of all 3-metrics, g_{ab} .
- Gauge group: Diff³
- Base space: Superspace = Riem / Diff

Can be made into PFB by removing g's with global isometries [Gomes '11].

Best-matching constraints: $pt_{\alpha}q \rightarrow g_{ab}\mathcal{L}_{N^a}\pi^{ab}$ (after I by P)

Local geodesic:
$$G^{ab}p_ap_a-1=0 o rac{G^{abcd}}{g(R-2\Lambda)}\pi_{ab}\pi_{cd}-1=0.$$

 \therefore GR \sim gauge theory on Riem with a local geodesic principle on Superspace!

3 + 1 has its own beauty!

Canonical best matching

Matching procedure \sim canonical transformation on phase space

Procedure:

- Start with first class Hamiltonian system: $(\Gamma(q,p), H \approx 0, \mathcal{H}_i \approx 0, \chi_j \approx 0)$
- Enlarge phase space $\Gamma(q,p) \to \Gamma_{\rm e}(q,\phi;p,\pi_{\phi})$.
- Introduce constraint $\pi^{\phi} \approx 0$. (first class)
- Perform canonical transformation T:

$$F(q,\phi;P,\Pi_{\phi}) = \int dt \left(P \mathrm{e}^{\phi} q + \phi \Pi_{\phi}
ight)$$

 $\Rightarrow q o e^{\phi} q$ and $\pi_{\phi} o \pi_{\phi} - ptq$.

• Impose best-matching constraint $\pi_{\phi} \approx 0$.

3 cases

- \bullet $\pi_{\phi} \approx 0$ first class: standard gauge theory.
- ② $\pi_{\phi} \approx 0$ second class: fix Lagrange multiplier.
- \bullet $\pi_{\phi} \approx 0$ second class: secondary constraints.

Utrecht

Construct linking theory

- Start with local geodesic principle on ADM phase space: $(\Gamma(g_{ab}, \pi^{ab}), S(N) \approx 0)$
- ② BM diffeos $g_{ab} \rightarrow g_{ab} + \mathcal{L}_{\xi} g_{ab}$.
- **1** Diffeo constraint $H(\xi) \approx 0$ is first class. \therefore case 1.
- ullet BM vpcts: $g_{ab}
 ightarrow e^{4\hat{\phi}} g_{ab}$.
- **3** Vpct constraints $D(\rho)$ are second class wrt S(N). \therefore case 2.

Partial gauge fixing of S(N)

Note: Vol preserving condition \rightarrow global restriction on $D(\rho)$.

$$\therefore$$
 Decompose $S = S_{CMC} + \tilde{S}$

 $\tilde{S} \equiv \text{part of } S \text{ that is second class wrt to } D!$

Shape dynamics: linking theory

Definition of $\mathcal{H}_{\mathsf{gl}}$

$$\mathcal{H}_{\mathsf{gl}}(g,\pi) = \mathcal{S}_{\mathsf{CMC}}(T_{\phi}g,T_{\phi}\pi)$$

Notes:

- $\tilde{S} = \text{part of } S \text{ gauge fixed by } D = 0.$
- Foliation invariance is traded for vpct.
- Intersection: CMC (soap bubbles).

Problem

The equation

$$\mathcal{H}_{\mathsf{gl}} = \mathcal{S}(T_{\phi}g, T_{\phi}\pi)$$

is a non–linear elliptic PDE (because $T_{\phi}R = e^{-4\hat{\phi}}\left(R - 8\frac{\nabla^2(e^{\hat{\phi}})}{e^{\hat{\phi}}}\right)$).

 \mathcal{L}_{gl} is non–local!

Perturbative expansion

$$\mathcal{H}_{\mathsf{gl}} = \sum_{n} V^{-n} \mathcal{H}_{\mathsf{gl}}^{(n)}$$

Solve the PDE order by order in 1/V:

$$\mathcal{H}_{gl} = \left(2\Lambda - rac{1}{6} \left\langle \pi
ight
angle^2
ight) + \ldots$$

dS/CFT correspondence

Large
$$V: \mathcal{H}_{\mathrm{gl}} + D(x) \approx 0 \rightarrow g_{ab}\pi^{ab} \approx \pm \sqrt{12\Lambda}!$$

:. full (inhomogeneous) conformal constraints!

dS/CFT correspondence

Semi–classical: $S_{\rm HJ} \sim Z_{\rm CFT}$.: HJ eq'n \sim Conformal Ward identity

- We can repeat standard Holographic RG cals \Rightarrow easier in SD.
- Potential construction principle for shape dynamics!?

Comments •0

- Perturbative SD: perts about a background and cosmo pert theory.
- Matter coupling.
- Ashtekar variables + LQSD
- Connection with AdS/CFT.
- New variables: conformal Cartan connections (slide).

Conformal Cartan connection

Motivation

Ashtekar connection \rightarrow ugly under vpcts!!

Find variables that transform trivially under vpcts.

Idea: Find frame fields, e_a^I that give the metric only up to a conformal factor

$$g_{ab}=e^{4\phi}e_a^Ie_b^I.$$

Thus:

- $e_a^l \in \text{fund rep of conformal group } SO(4,1)$.
- Connection $A_a^{IJ} \in SO(4,1)$ valued 1-form.

Advantages:

- Ham of linking theory is naturally written in these variables and F(A).
- Natural physical Hilbert space: conformal spinnets (conformal nets??).
- SO(4,1) isometry group of (Euclidean) AdS \rightarrow AdS/CFT correspondence?!

