Octupole collectivity in ²²⁰Rn and ²²⁴Ra

Liam P. Gaffney

Oliver Lodge Laboratory, University of Liverpool, UK

Octupole Collectivity

Octupole Collectivity

Macroscopically... Nuclei take on a "pear" shape 0 0 β, В EVEN - EVEN

Image: I.Ahmed and P.A. Butler, Ann. Rev. Nucl. Part. Sci (1993) 43

- 2^{L} deformation -- β_{L}
- L=2: Quadrupole, oblate/prolate shapes
- L=3: Octupole, reflection asymmetry

Reflection asymmetric

- β₃-vibration
- Static β_3 -deformation
- Rigid β₃-deformation...

Signatures...

Odd-even staggering, negative parity

Parity doublets in odd-A nuclei

Enhanced EI transitions

Large E3 strength $\rightarrow B(E3; 0^+ \rightarrow 3^-) = \langle 0^+ ||E3||3^- \rangle^2$

3

Octupole Collectivity

Coulomb Excitation

Coulomb Excitation

Ground State

MINIBALL

²²⁰Rn/²²⁴Ra beam

@~2.83A.MeV

ALLIN

The experiment - ²²⁴Ra

²²⁴Ra

The experiment - ²²⁴Ra

The experiment - ²²⁴Ra

Analysis - ²²⁴Ra

Total statistics, background subtracted, Doppler corrected for scattered projectile

Analysis - ²²⁴Ra

Total statistics, background subtracted, Doppler corrected for scattered projectile

Analysis - ²²⁴Ra

Total statistics, background subtracted, Doppler corrected for scattered projectile

Analysis - ²²⁴Ra

New ⁶⁰Ni data (blue) compared to ¹²⁰Sn data (red) from 2010 normalised to the $2^+ \rightarrow 0^+$ transition

Results (²²⁴Ra) - E2 matrix elements

Results (²²⁴Ra) - E2 matrix elements

The experiment - ²²⁰Rn

The experiment - ²²⁰Rn

- Observed new state at 939keV
- Assigned to 2+ from decay and excitation paths
- Gamma-band from population strength and comparison to 224Ra

Analysis - ²²⁰Rn

⁶⁰Ni (blue) compared to ¹²⁰Sn (red) target excitation normalised to the $2^+ \rightarrow 0^+$ transition

Analysis - ²²⁰Rn

⁶⁰Ni (blue) compared to ¹²⁰Sn (red) target excitation normalised to the $2^+ \rightarrow 0^+$ transition

• ²²⁴Ra: Q₂(2⁺) = 6.33(7) eb

(τ_{2+} previously measured; data point included in fit)

• ²²⁴Ra: Q₂(2⁺) = 6.33(7) eb

(τ_{2+} previously measured; data point included in fit)

- ²²⁴Ra: $Q_2(2^+) = 6.33(7)$ eb (τ_{2^+} previously measured; data point included in fit)
- ²²⁶Ra: $Q_2(2^+) = 7.17(3)$ eb (Coulex measurement^[1]) $Q_3(3^-) = 2.81(14) \text{ eb}^{3/2} \rightarrow \beta_2 = 0.165, \beta_3 = 0.104, \beta_4 = 0.123$

- ²²⁴Ra: $Q_2(2^+) = 6.33(7)$ eb (T_{2^+} previously measured; data point included in fit)
- ²²⁶Ra: $Q_2(2^+) = 7.17(3)$ eb (Coulex measurement^[1]) $Q_3(3^-) = 2.81(14) \text{ eb}^{3/2} \rightarrow \beta_2 = 0.165, \beta_3 = 0.104, \beta_4 = 0.123$
- Mean field theory reproduces small D₀ and predicts $\beta_2 = 0.128$, $\beta_3 = 0.105$, $\beta_4 = 0.075^{[2,3]}$

17

- Static quadrupole-octupole coupling only way to reproduce these values...
- Recent cluster model predicts $Q_3(3^-) = 2.89 \text{ eb}^{3/2}$ but cannot reproduce small $D_0^{[4]}$

[1] H. J. Wollersheim et al., Nucl. Phys. A 556 (1993) 261
[2] P.A. Butler and W. Nazarewicz, Nucl. Phys. A 533 (1991) 249
[3] W. Nazarewicz et al., Nucl. Phys. A 429 (1984) 269
[4] T.M. Shneidman et al., Phys Rev C 67 (2003) 014313

- ²²⁴Ra: $Q_2(2^+) = 6.33(7)$ eb (τ_{2^+} previously measured; data point included in fit)
- ²²⁶Ra: $Q_2(2^+) = 7.17(3)$ eb (Coulex measurement^[1]) $Q_3(3^-) = 2.81(14) \text{ eb}^{3/2} \rightarrow \beta_2 = 0.165, \beta_3 = 0.104, \beta_4 = 0.123$
- Mean field theory reproduces small D₀ and predicts $\beta_2 = 0.128$, $\beta_3 = 0.105$, $\beta_4 = 0.075^{[2,3]}$
- Static quadrupole-octupole coupling only way to reproduce these values...
- Recent cluster model predicts $Q_3(3^-) = 2.89 \text{ eb}^{3/2}$ but cannot reproduce small $D_0^{[4]}$

[1] H. J. Wollersheim et al., Nucl. Phys. A 556 (1993) 261
[2] P.A. Butler and W. Nazarewicz, Nucl. Phys. A 533 (1991) 249
[3] W. Nazarewicz et al., Nucl. Phys. A 429 (1984) 269
[4] T.M. Shneidman et al., Phys Rev C 67 (2003) 014313

- ²²⁴Ra: $Q_2(2^+) = 6.33(7)$ eb (τ_{2^+} previously measured; data point included in fit)
- ²²⁶Ra: $Q_2(2^+) = 7.17(3)$ eb (Coulex measurement^[1]) $Q_3(3^-) = 2.81(14) \text{ eb}^{3/2} \rightarrow \beta_2 = 0.165, \beta_3 = 0.104, \beta_4 = 0.123$
- Mean field theory reproduces small D₀ and predicts $\beta_2 = 0.128$, $\beta_3 = 0.105$, $\beta_4 = 0.075^{[2,3]}$
- Static quadrupole-octupole coupling only way to reproduce these values...
- Recent cluster model predicts $Q_3(3^-) = 2.89 \text{ eb}^{3/2}$ but cannot reproduce small $D_0^{[4]}$

[1] H. J. Wollersheim et al., Nucl. Phys. A 556 (1993) 261
[2] P.A. Butler and W. Nazarewicz, Nucl. Phys. A 533 (1991) 249
[3] W. Nazarewicz et al., Nucl. Phys. A 429 (1984) 269
[4] T.M. Shneidman et al., Phys Rev C 67 (2003) 014313

• First B(E3) measured with a radioactive beam?

- ²²⁴Ra: $Q_2(2^+) = 6.33(7)$ eb (T_{2^+} previously measured; data point included in fit)
- ²²⁶Ra: $Q_2(2^+) = 7.17(3)$ eb (Coulex measurement^[1]) $Q_3(3^-) = 2.81(14) \text{ eb}^{3/2} \rightarrow \beta_2 = 0.165, \beta_3 = 0.104, \beta_4 = 0.123$
- Mean field theory reproduces small D₀ and predicts $\beta_2 = 0.128$, $\beta_3 = 0.105$, $\beta_4 = 0.075^{[2,3]}$
- Static quadrupole-octupole coupling only way to reproduce these values...
- Recent cluster model predicts $Q_3(3^-) = 2.89 \text{ eb}^{3/2}$ but cannot reproduce small $D_0^{[4]}$

[1] H. J. Wollersheim et al., Nucl. Phys. A 556 (1993) 261
[2] P.A. Butler and W. Nazarewicz, Nucl. Phys. A 533 (1991) 249
[3] W. Nazarewicz et al., Nucl. Phys. A 429 (1984) 269
[4] T.M. Shneidman et al., Phys Rev C 67 (2003) 014313

- First B(E3) measured with a radioactive beam?
- Heaviest (A=224) post-accelerated, radioactive beam?

Collaborators

T.E. Cocolios, J. Pakarinen, J.Cederkall, D.Voulot, F.Wernander Th. Kröll, S. Bönig, C. Bauer, M. von Schmid B. Bastin T. Grahn, A. Herzan A. Blazhev, M. Seidlitz, N.Warr, M. Albers, M. Pfeiffer, D. Radeck M. Rudigier, P.Thöle P. van Duppen, N. Bree, J. Diriken, N. Kesteloot S. Sambi, K. Reynders L. P. Gaffney, P.A. Butler, M. Scheck, D.T. Joss, S.V. Rigby E. Kwan T. Chupp D. Cline, C.Y.Wu M. Zielinska, P. Napiorkowski, M. Kowalczyk D.G. Jenkins

CERN-ISOLDE, Switzerland TU Darmstadt, Germany Ganil, France University of Jyväskylä, Finland University of Köln, Germany

KU Leuven, Belgium

University of Liverpool, UK Lawrence Livermore Laboratory, US University of Michigan, US University of Rochester, US HIL University of Warsaw, Poland University of York, UK

and the REX-ISOLDE and MINIBALL collaborations

Thank you!

Aside - Protons off...!

Rate of scattered particles during 224 Ra run, August 2011

Aside - Protons off...!

Rate of scattered particles during 224 Ra run, August 2011

Simulation - ²²⁴Ra

²²⁴Ra on ¹¹²Cd Simulated Yields with and without E3 moment

Simulation - ²²⁴Ra

²²⁴Ra on ¹¹²Cd Simulated Yields with and without E3 moment

Gamma-Gamma Matrix - ²²⁴Ra

Gosia Analysis

Measured E3 matrix elements [e·fm³]

Stretched: < I ||E3||I - 3 >Un-stretched: < I ||E3||I - 1 >

Gosia Analysis

[Ref] H. J. Wollersheim et al., Nucl. Phys. A 556, 261 (1993)

Gosia Analysis

24

I(ħ)