
P.Hristov

30/09/2011

ISTC-CERN-JINR Summer School

on High Energy Physics and Accelerator Physics

Modern tools for simulation and

analysis: Geant4, ROOT

Outlook & References
 Data processing and reconstruction, analysis

 J. Boyd, “From raw data to physics”

https://indico.cern.ch/conferenceDisplay.py?confId=134618

 Analysis
 D.Glenzinski, “Physics and Analysis at a Hadron Collider - An Introduction”

https://indico.cern.ch/conferenceDisplay.py?confId=77805

 ROOT
 J.F. Grosse-Oetringhaus, “Introduction to ROOT”

https://indico.cern.ch/conferenceDisplay.py?confId=134329

 Geant4
 J. Apostolakis, “The Geant4 Toolkit: Evolution and Status”

http://bit.ly/g4mc2010

 U.Penn Geant4 Tutorial (full week)

http://geant4.slac.stanford.edu/UPenn2011/Agenda.html

 D. Oxley, “An Introduction to Geant4”

https://ns.ph.liv.ac.uk/~dco/Lectures/An_Introduction_to_Geant4_pdf.pdf

 1

https://indico.cern.ch/conferenceDisplay.py?confId=134618
https://indico.cern.ch/conferenceDisplay.py?confId=77805
https://indico.cern.ch/conferenceDisplay.py?confId=134329
http://bit.ly/g4mc2010
http://geant4.slac.stanford.edu/UPenn2011/Agenda.html
https://ns.ph.liv.ac.uk/~dco/Lectures/An_Introduction_to_Geant4_pdf.pdf

Abbreviations
 ECS – Experiment Control

System

 DCS – Detector Control System

 TRG – Trigger

 DAQ – Data Acquisition System

 CDB – Conditions Data Base

 RAW – Raw Data

 CALIB – Calibration Procedures

 ALIGN – Alignment Procedures

 RECO – Reconstruction
Procedures

 ESD – Event Summary Data

 AOD – Analysis Object Data

 HITS – Simulated energy
deposition at given location and
time + MC truth

 DIGI – Digitization Procedures
 From analog signal to digital

representation

 MC truth – the characteristics
of the simulated particle and/or
“labels” to navigate back to the
array of simulated particles

2

Raw (“Real”) Data Processing

ECS

DCS

TRG

HTL

DAQ

RAW

CDB

CALIB

ALIGN

RECO ESD

3

Data reduction/abstraction

hits
(x1,y1,z1, t1)

(x2,y2,z2, t2)

...

Track finding +

Track fit --->

Track 1

Track 2

Event 1
Event 2

Digitization/

Reconstruction --->

Analog
signals

particle

detector

element

Store the
info for every

event and

every track

<-------

Magnetic field B:

reconstruct

 px

p = py

 pz

Track momentum

helix
(R, d0, z0)

x

y

4
J.Boyd

Reconstruction
 Detector reconstruction

 Tracking : global methods (Hough transform, combinatorial, etc), local methods (Kalman filter)
 finding path of charged particles through the detector

 Calorimeter reconstruction: clusterization algorithms
 finding energy deposits in calorimeters from charged and neutral particles

 Particle identification: dE/dx; transition radiation; E/p; Cerenkov angle, etc.

 Combined reconstruction
 Track/cluster matching

 Electron/Photon identification

 Muon identification

 Jet finding

 Calibrations and alignments applied at nearly every step

5 J.Boyd

Important figures of merit for

reconstructed objects

 Efficiency = (Number of Reconstructed
Tracks) / (Number of True Tracks)
 how often do we reconstruct the object – e.g.

tracking efficiency

 Resolution = (Measured_Energy –
True_Energy)/ True_Energy
 how accurately do we reconstruct a quantity –

e.g. energy resolution

 Fake rate = (Number of jets reconstructed as
an electron) / (Number of jets)
 how often we reconstruct a different object as

the object we are interested in – e.g. a jet faking
a electron

For physics analysis it is important

i) to have high efficiency, good resolution, and low fake rates

ii) to be able to measure the efficiencies, resolutions and fake rates and their uncertainties

(not easy)
6

J.Boyd

Resolution: useful expressions

7

 Momentum:

 Energy:

 Impact parameter:

 Examples from CDF & D0

CDF D0

12 60 (MeV/c2)

2.5 6.0 (GeV/c2)

3.0 3.0 (GeV/c2)

16 14 (%)

30 30 (μm)

D.Glenzinski

Analysis Strategy

8

Q: What constitutes a complete analysis?

A: A suite of studies which together provide a coherent and

thorough description of a particular set of data events

 Should cover all aspects necessary to understand and

characterize these events

 Should be well documented via internal notes

 Should be subjected to peer review

D.Glenzinski

Rules of Thumb

9

 Look before you leap
 Plan your analysis strategy carefully even if the analyses are in general more

iterative than linear
 Identify those aspects which will drive the sensitivity
 What plots, figures, and tables will be important?
 What data sets will you need?
 What triggers do these data sets use?
 What Monte Carlo (MC) samples will you need?

 Trust but verify
 Always ask yourself, “Does this make sense?”
 Know where to find more detailed information if necessary

 A stitch in time saves nine
 Sweat the (relevant) details, it will save time in the long run
 When you spot a problem, take the time to understand it

D.Glenzinski

Analysis Basics

10

 Basic inputs to all analyses essentially the same

 Estimate of signal acceptance after all requirements

 Estimate of number of expected background events surviving

all selection requirements

 Statistical and systematic uncertainties for each

 Basic types of analyses

 Counting experiments (cross sections, BR)

 Determining properties (mass, lifetime)

 Search for something new (small SM σ*BR, new physics (NP))

 As you see, we need both “real” data and MC

D.Glenzinski

Physics Analysis Steps
 Start with the output of reconstruction

 Apply an event selection based on the reconstructed object quantities

 Often calculate new information e.g masses of combinations of particles

 Event selection designed to improve the ‘signal’ to ‘background’ in your
event sample

 Estimate

 Efficiency of selection

 Background after selection

 Can use simulation for these – but have to use data-driven techniques to
understand the uncertainties

 Make final plot

 Comparing data to theory

 Correcting for efficiency and background in data

 Include the statistical and systematic uncertainties

 ~TB

~kB

11
J.Boyd

Sensitivity studies (to improve the

selection criteria/”cuts”)

12

 You first need to choose a “figure-of-merit” (FOM)

 Obvious for measurements

 FOM = minimize the expected uncertainty on the quantity

being measured

 For searches, a choice needs to be made

 Standard FOM are

 Maximize S2/(S+B)

 Minimize expected limit, <Limit>

 Minimize necessary luminosity to achieve a given level of

“discovery”, L5σ

D.Glenzinski

Efficiency
 We factorized the efficiency into several components

 Used data-driven determinations of efficiency whenever
possible (for example the trigger efficiencies)

 Allows some of the work to benefit other analyses since many of
the efficiencies are independent of a specific analysis

 Requires some forethought to ensure pieces are consistently
defined

 Check the consistency between Data and MC when you
estimate efficiencies from MC

 Example
 α⋅ εtotal = α⋅ εTracking ⋅ ε Trigger ⋅ ε Vertexer ⋅ ε Analysis

 αis the geometric and kinematic acceptance

13 D.Glenzinski

Simulated (“MC”) Data Processing

RAW +

MC

truth

CDB

RECO
MC

ESD

Event

Generator

Simulation

Package

(Geant4):

Particle

transport

Detector

Description

Geometry,

Materials

Physics

List

HITS:

E,x,y,z,t

MC truth

DIGI

14

Simulation workflow: Example

Z0

q

q

e+

e-

Physics simulation

Simulate the physics interaction

(set in the simulation configuration)
Output of this part is the 4-

vector’s of the produced

particles.

In this case the 4-vector’s of

the 2 electrons from the Z

decay.

Detector Simulation

Simulate the propagation of the

electrons through the detector.

Including:

-bending in the magnetic field

-leaving hits in the tracking

detector elements

-interacting with the material in

the detector

-interacting in the calorimeter

(detailed description of the EM

shower)

particle

detector

element

Electronics Simulation

Simulate the response of the

detector elements to the ‘hits’

from the electron.

Simulate the voltage pulse on

the detector and how the

detector electronics works.

The output of this stage is very

similar to the raw data from

the detector.

(but we keep the truth

information).

Detector simulation step is very CPU intensive. Requires huge computing resources. J.Boyd

 Mature, extensible kernel
 Powerful geometry modeler, E/B fields, track stacking

 Diverse set Physics models (mostly 2 alternatives)
 e-/e+/gamma 10s eV to TeV
 Hadron-nucleus interactions up to 1 TeV
 Neutron interactions from thermal to 1 TeV
 Ion-ion interaction from 100s MeV/n to 10 GeV/n
 Optical, weak (decay of unstable and radioactivity)

 Tools for input, output, visualization, scripting

 Every increasing use
 Over 2000 citations for G4 NIMA paper (2003)

 Product of collaboration of 90 contributors
 Effort: HEP (75%), Biology/medical (15-20%), space (5-10%).

 Open Source: Distributed via web. G4 license since 2006.

Geant4 Toolkit, SNA-MC 2010 16

Geant4 toolkit on one slide

High Energy Physics Experiments

Space: radiation effects, science

Geant4 @ Medical Science

 Four major use cases
 Beam therapy
 Brachytherapy
 Imaging
 Cell Irradiation study

19 Geant4 Toolkit, SNA-MC 2010

Some Basics

20

 Simplest Geant simulation needs three classes and a main to

run

 Geometry

 Primary Generator Action

 Physics List

 Running Geant4

 Hard code your commands into your main

 Use a macros – a script containing a list of commands executed

sequentially

 Use a GUI

Main

Event

Generator
Geometry Physics

D.Oxley

Defining your materials

21

 Materials are defined based upon their chemical structure

 First define your element(s)

 Then define your material

 Assigned weighted quantities of element to material

 Two examples: Argon (element), Water (composite)

 Atomic number, molar mass, density

 Example: Water H 2O
 Two ingredients : Two hydrogen , one oxygen
 Define hydrogen
 Define Oxygen
 Define Water
 Assign two hydrogen atoms and one oxygen atom to water

 See also G4NISTManager class, it allows to build materials (and
elements) via names

D.Oxley

Defining your world

22

 Define all objects within the world

 Shape SOLID (G4SOLID)

 Size LOGIC (G4LOGIC)

 Material PHYSICAL (G4PVPLACEMENT)

 Position

 Use the classes provided by Geant4

 Example: Box, Cylinder, Sphere

 Many more existing classes, User’s Guide (4.1.2)

Defining a source

23

 Two types covered here

 Beams

 Stationary sources

 Beams are defined in a source file in the Primary Generator Action

 Stationary sources can be defined there using random numbers to
generate isotropic distributions

 Or use pre-defined class in a macro G4GeneralParticleSource

 All primary generators are defined in a user Primary Generator
Action (a class derived from
G4VUserPrimaryGeneratorAction);besides
G4GeneralParticleSource there is G4ParticleGun which is more
simple generator

D.Oxley

Physics List

24

 Geant4 doesn’t “automatically” include any physics

 You need to tell Geant4 what physical interactions you are interested in

 Originates from particles physics background where “new physics”
would need implementing

 Include:
 Particles you want (bosons, mesons etc.)
 Interactions you want (photoelectric, Compton, Pair production)
 The correct energy range: different for the energy range you are interested

in
 Standard, low energy, very low energy
 Beware of your cut values

 Geant4 provides a set of physics lists and it is recommended to users to
start with one of these. See more details
at:http://geant4.web.cern.ch/geant4/support/index.shtml

 --> Physics list

D.Oxley

http://geant4.web.cern.ch/geant4/support/index.shtml
http://geant4.web.cern.ch/geant4/support/index.shtml
http://geant4.web.cern.ch/geant4/support/index.shtml
http://geant4.web.cern.ch/geant4/support/index.shtml
http://geant4.web.cern.ch/geant4/support/index.shtml

Physics List: Cuts

25

 Cut value defines the extent to which a particle is tracked

 Cuts are defined in distance (range)

 Converted into energy based on the material

 100keV

 Cut value = 1mm

γ100 KeV γ100 KeV

Electron won’t be tracked

Distance < Cut

Electron will be tracked

Distance > Cut D.Oxley

Extracting information from Geant4

26

 Two additional classes (minimum):
 Sensitive Detector

 Hit

 (Event Action) is useful, but not essential

 Which volumes are made sensitive is defined in the geometry class
 At logical stage

 Hit defines the object of an interaction
 Energy deposit, Position, Interaction type, Detector segment

 Hits will only be defined in sensitive detectors (not in passive volumes)

 Hits are assigned their attributes (Energy, position) not in the hit class, but in
the sensitive detector class

 User can extract info at all stages of event processing: stepping, tracking, event,
run action. Besides that he can use scorer classes which are a kind of ready to be
used by sensitive detectors for accounting various quantities

Geometry
Sensitive

Detector
Hit

Output
D.Oxley

Compare C++ codes

27

 Geometry: assigns a volume to be sensitive

 Sensitive detector:

 builds a Hit

 assigns it to HitCollection

 Hit class defines attributes of the hit

 Sensitive Detector either:

 outputs HitCollection

 or sends HitCollection to EventAction file

 EventAction:

 necessary to process several HitCollections

 examine several HitCollections, establish HitCollection

D.Oxley

Geant4 is MORE…

28

 Kernel: 3 lectures

 Geometry: 4 lectures

 Materials: 1 lecture

 Physics: 3 lectures

 EM Physics: 2 lectures

 Hadron Physics: 3 lectures

 Physics Lists: 1 lecture

 Visualization: 3 lectures

 Primary particles: 1 lecture

 Analysis: 1 lectures

 Upgrading: 1 lecture

 User interface: 2 lectures

 Event biasing: 1 lectures

 User documentation and

examples: 2 lectures

Suggestions (not only for Geant4)

29

DO’s

 Consult the user guide with any
problems or for more detail

 Consult the HyperNews forum if
you get stuck

 Just start playing around with one
of the examples

 If you get a bug in it you can’t fix,
you can always download it again

 Always think about what you need
in terms of physics and cut values

 Do discard physics and events you
don’t need: you are the expert of
your work

DON’T’s

 Treat this lecture as a replacement
of the User Guide:

 Geant4 is very complex and cannot
be explained fully in few slides

 Don’t wait until you are a C++
expert before you start

 Don’t read the whole user guide
before you start

 Don’t assume Geant4 will “just get
it right”

 Don’t let too much detail slow you
down

D.Oxley

Use the Geant4 novice examples to start with

(sec. 9.1 of the Users Guide for Application developers)

http://geant4.fnal.gov/index_web/novice_examples_explained.shtml

http://geant4.fnal.gov/index_web/novice_examples_explained.shtml

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
30

ROOT in a Nutshell
 ROOT is a large Object-Oriented data handling and analysis

framework
 Efficient object store scaling from KB’s to PB’s

 C++ interpreter

 Extensive 2D+3D scientific data visualization capabilities

 Extensive set of multi-dimensional histograming, data fitting,
modeling and analysis methods

 Complete set of GUI widgets

 Classes for threading, shared memory, networking, etc.

 Parallel version of analysis engine runs on clusters and multi-core

 Fully cross platform: Unix/Linux, MacOS X and Windows

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
31

ROOT in a Nutshell (2)

 The user interacts with ROOT via a graphical user interface,

the command line or scripts

 The command and scripting language is C++

 Embedded CINT C++ interpreter

 Large scripts can be compiled and dynamically loaded

And for you?

ROOT is usually the interface (and sometimes the barrier)

between you and the data

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
32

The ROOT Libraries
 Over 2,500 classes

 3,000,000 lines of code

 CORE (8 Mbytes)

 CINT (2 Mbytes)

 Most libraries linked on
demand via plug-in
manager (only a subset
shown)

 100 shared libs

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
33

ROOT: An Open Source Project
 The project was started in Jan 1995

 First release Nov 1995

 The project is developed as a collaboration between:
 Full time developers:

 7 people full time at CERN (PH/SFT)

 2 developers at Fermilab/USA

 Large number of part-time contributors (160 in CREDITS file)

 A long list of users giving feedback, comments, bug fixes and many small contributions

 5,500 users registered to RootTalk forum

 10,000 posts per year

 An Open Source Project, source available under the LGPL license

 Used by all HEP experiments in the world

 Used in many other scientific fields and in commercial world

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
34

Some ROOT Statistics

 ROOT binaries have been downloaded about 600,000 times

since 1997

 The estimated user base is about 20,000 people

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
35

ROOT Application Domains

Data Storage: Local, Network

Data Analysis & Visualization

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
36

CINT in ROOT

 CINT is used in ROOT:

 As command line interpreter

 As script interpreter

 To generate class dictionaries

 To generate function/method calling stubs

 Signals/slots with the GUI

 The command line, script and programming language become
the same

 Large scripts can be compiled for optimal performance

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
37

First CINT Example

$ root

root [0] 344+76.8

(const double)4.20800000000000010e+002

root [1] float x=89.7;

root [2] float y=567.8;

root [3] x+sqrt(y)

(double)1.13528550991510710e+002

root [4] float z = x+2*sqrt(y/6);

root [5] z

(float)1.09155929565429690e+002

root [6] .q

$

Display online help with: root [0] .h

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
38

Named Macros
 It is quite cumbersome to type the same lines again and again

 Create macros for commonly used code

 Macro = file that is interpreted by CINT

 Execute with root [0] .x mymacro.C(10)

 Or root [0] .L mymacro.C

 root [1] mymacro(10)

int mymacro(int value)

{

 int ret = 42;

 ret += value;

 return ret;

}

saved in mymacro.C

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
39

Compile Macros – Libraries

 "Library": compiled code, shared library

 CINT can call its functions!

 Building a library from a macro: ACLiC

(Automatic Compiler of Libraries for CINT)

 Execute it with a “+” root [0] .x mymacro.C(42)+

 Or root [0] .L mymacro.C+

 root [1] mymacro(42)

 No Makefile needed

 CINT knows all functions in the library mymacro_C.so/.dll

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
40

Compiled vs. Interpreted
 Why compile?

 Faster execution, CINT has some limitations…

 Why interpret?

 Faster Edit → Run → Check result → Edit cycles ("rapid
prototyping"). Scripting is sometimes just easier

 So when should I start compiling?

 For simple things: start with macros

 Rule of thumb
 Is it a lot of code or running slow?  Compile it!

 Does it behave weird?  Compile it!

 Is there an error that you do not find  Compile it!

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
41

Unnamed Macros

 No function, just statements

 Execute with root [0] .x mymacro.C

 No functions, thus no arguments

 Named macro recommended!

{

 float ret = 0.42;

 return sin(ret);

}

saved in mymacro.C

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
42

ROOT Types

 You can use native C types in your code (as long as you don’t

make your data persistent, i.e. write to files)

 ROOT redefines all types to achieve platform independency

 E.g. the type int has a different number of bits on different

systems

 int  Int_t float  Float_t

double  Double_t long  Long64_t (not Long_t)

etc.

 See $ROOTSYS/include/Rtypes.h

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
43

Histograms & Graphs

 Container for binned data

 Most of HEP’s distributions

 Container for distinct points

 Calculation or fit results

Histogram Graph

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
44

Histograms
 Histograms are binned data containers

 There are 1, 2 and 3-dimensional histograms  TH1, TH2, TH3

 The data can be stored with different precision and in different types (byte,

short, int, float, double)

 TH1C, TH1S, TH1I, TH1F, TH1D

(same for TH2, TH3)

 Histogram Example

hist = new TH1F("hist", "Vertex

 distribution;z (cm);Events", 20, -10, 10);

hist->Fill(0.05);

hist->Fill(-7.4);

hist->Fill(0.2);

hist->Draw();

NB: All ROOT classes start with T

Looking for e.g. a string? Try TString

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
45

Graphs
 A graph is a data container filled with distinct points

 TGraph: x/y graph without error bars

 TGraphErrors: x/y graph with error bars

 TGraphAsymmErrors: x/y graph with asymmetric error bars

Graph Example

graph = new TGraph;

graph->SetPoint(graph->GetN(), 1, 2.3);

graph->SetPoint(graph->GetN(), 2, 0.8);

graph->SetPoint(graph->GetN(), 3, -4);

graph->Draw("AP");

graph->SetMarkerStyle(21);

graph->GetYaxis()->SetRangeUser(-10, 10);

graph->GetXaxis()->SetTitle("Run number");

graph->GetYaxis()->SetTitle("z (cm)");

graph->SetTitle("Average vertex position");

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
46

Graphs (2)

$ROOTSYS/tutorials/graphs/gerrors2.C

TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh)

TGraph(n,x,y)

TCutG(n,x,y)

TGraphErrors(n,x,y,ex,ey)

TMultiGraph

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
47

 You can draw with the command line

 The Draw function adds the object to

the list of primitives of the current pad

 If no pad exists, a pad is automatically

created

 A pad is embedded in a canvas

 You create one manually with new

TCanvas

 A canvas has one pad by default

 You can add more

Hello

root [] TLine line(.1,.9,.6,.6)

root [] line.Draw()

root [] TText text(.5,.2,”Hello”)

root [] text.Draw()

Graphics Objects

Canvas

Pad

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
48

TButton

TLine TArrow TEllipse

TCurvyLine

TPaveLabel

TPave

TDiamond

TPavesText

TPolyLine
TLatex

TCrown

TMarker

TText

TCurlyArc

TBox

More Graphics Objects

Can be accessed with the toolbar

View  Toolbar (in any canvas)

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
49

Full LateX
support

on screen
and

postscript

TCurlyArc
TCurlyLine
TWavyLine

and other building
blocks for

Feynmann diagrams

$ROOTSYS/tutorials/graphics/feynman.C

$ROOTSYS/tutorials/graphics/latex3.C

Formula or

diagrams can

be

edited with the

mouse

A lot more examples come with the ROOT installation

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
50

Graphics Examples

TGLParametric

TF3

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
51

Input/Output

Object in

Memory

Streamer

http

sockets Net File

Web File

XML XML File

SQL RDBMS

B
uf

fe
r

The automatically generated ROOT streamer for each class streams all class members, resolves circular

dependencies and multiply referenced objects

 No streamer function needs to be written

 No need for separation of transient and persistent classes

Local File on disk

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
52

Files

 TFile is the class to access files on your file system (and

elsewhere)

 A TFile object may contain directories (TDirectory), like a

Unix file system

 ROOT files are self describing

 Dictionary for persistent classes written to the file

 Support for Backward and Forward compatibility

 Files created in 2006 must be readable in 2020

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
53

File Example
void keyWrite() {

 TFile f("file.root", "new");

 TH1F h("hist", "test", 100, -3, 3);

 h.FillRandom("gaus", 1000);

 h.Write()

}

void keyRead() {

 TFile f("file.root");

 TH1F *h = (TH1F*) f.Get("hist");

 h.Draw();

}

This works as well for your own class!

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
54

1 billion people surfing
the Web

LHC: How Much Data?

105

104

103

102

Level 1 Rate

(Hz)

High Level-1 Trigger

(1 MHz)
High No. Channels

High Bandwidth

(500 Gbit/s)

High Data Archive

(5 PetaBytes/year)

10 Gbits/s in Data base

LHCB

KLOE

HERA-B

CDF II

CDF

H1

ZEUS

UA1

LEP

NA49
ALICE

Event Size (bytes)

104 105 106

ATLAS

CMS

106

107

STAR How to store large number of

events and data volumes efficiently?

 ROOT Trees

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
55

What is a ROOT Tree?
 Trees have been designed to support very large collections of

objects. The overhead in memory is in general less than 4
bytes per entry.

 Trees allow direct and random access to any entry (sequential
access is the most efficient)

 Trees are structured into branches and leaves. One can read a
subset of all branches

 High level functions like TTree::Draw loop on all entries
with selection expressions

 Trees can be browsed via TBrowser

 Trees can be analyzed via TTreeViewer

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
56

Stored Trees vs. Memory
Tree On Disk One instance in memory

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
57

Trees: Split Mode

 The tree is partioned in branches

 Each class member is a branch (in split mode)

 When reading a tree, certain branches can be switched off
 speed up of analysis when not all data is needed

point

x

y

z

x x x x x x x x x x

y y y y y y y y y y

z z z z z z z z z z

Branches File 1 "Event"

Events

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
58

TTree - Writing

 You want to store 1 million objects of type TMyEvent in a

tree which is written into a file

 Initialization

 Fill the tree (1 million times)

 TTree::Fill copies content of

member as new entry into the tree

 Flush the tree to the file,

close the file

myEvent->SetMember(…); tree-
>Fill();

tree->Write();

f->Close();

TFile* f = TFile::Open("events.root", "RECREATE");
TTree* tree = new TTree("Events","Event Tree");
TMyEvent* myEvent = new TMyEvent;
TBranch* branch = tree->Branch("myevent",
 "TMyEvent", &myEvent);

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
59

TTree - Reading

 Open the file, retrieve the tree and connect the branch with a

pointer to TMyEvent

 Read entries from the tree and use the content of the class

TFile *f = TFile::Open("events.root");

TTree *tree = (TTree*)f->Get("Events");

TMyEvent* myEvent = 0;

tree->SetBranchAddress("myevent", &myEvent);

Int_t nentries = tree->GetEntries();

for (Int_t i=0;i<nentries;i++) {

 tree->GetEntry(i);

 cout << myEvent->GetMember() << endl;

}

A quick way to browse

through a tree is to use

a TBrowser

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
60

Fitting

 Fitting a histogram or graph

 With the GUI
 If you just try which functions works well or

need a single parameter
 Right click on graph or histogram
 Fit panel

 With the command line / macro
 If you fit many histograms/graphs or several

times

hist->Fit("gaus")

hist->FindFunction("gaus")->GetParameter(0)

Fit parameters printed to the screen

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
61

ROOT is MORE….
 In this talk, I presented the most basic classes typically used during

physics analyses

 ROOT contains many more libraries, e.g.

 FFT library

 Oracle, MySQL, etc interfaces

 XML drivers

 TMVA (Multi Variate Analysis)

 GRID, networking and thread classes

 Interfaces to Castor, Dcache, GFAL, xrootd

 Interfaces to Pythia, Geant3, Geant4, gdml

 Matrix packages, Fitting packages (i.e. RooFit), etc

 Geometry modeler

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
62

One Example: PROOF
 Parallel ROOT Facility

 Interactive parallel analysis on a local cluster

 Parallel processing of (local) data (trivial parallelism)

 Output handling with direct visualization

 Not a batch system

 PROOF itself is not related to Grid

 Can access Grid files

 The usage of PROOF is transparent

 The same code can be run locally and in a PROOF system (certain rules have to

be followed)

 PROOF is part of ROOT Data does not need to be copied

Many CPUs available for analysis

 much faster processing

Introduction to ROOT - Jan Fiete

Grosse-Oetringhaus
63

root

Remote PROOF Cluster

Data

root

root

root

Client –
Local PC

ana.C

stdout/result

node1

node2

node3

node4

ana.C

root

PROOF Schema

Data

Proof master

Proof slave

Result

Data

Result

Data

Result

Result

 Questions

64

