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Outlook & References 
 Data processing and reconstruction, analysis 

 J. Boyd, “From raw data to physics” 

https://indico.cern.ch/conferenceDisplay.py?confId=134618 

 Analysis 
 D.Glenzinski, “Physics and Analysis at a Hadron Collider - An Introduction” 

https://indico.cern.ch/conferenceDisplay.py?confId=77805 

 ROOT 
 J.F. Grosse-Oetringhaus, “Introduction to ROOT” 

https://indico.cern.ch/conferenceDisplay.py?confId=134329 

 Geant4 
 J. Apostolakis, “The Geant4 Toolkit: Evolution and Status” 

http://bit.ly/g4mc2010 

 U.Penn Geant4 Tutorial (full week) 

http://geant4.slac.stanford.edu/UPenn2011/Agenda.html 

 D. Oxley, “An Introduction to Geant4” 

https://ns.ph.liv.ac.uk/~dco/Lectures/An_Introduction_to_Geant4_pdf.pdf 

 

 

 1 

https://indico.cern.ch/conferenceDisplay.py?confId=134618
https://indico.cern.ch/conferenceDisplay.py?confId=77805
https://indico.cern.ch/conferenceDisplay.py?confId=134329
http://bit.ly/g4mc2010
http://geant4.slac.stanford.edu/UPenn2011/Agenda.html
https://ns.ph.liv.ac.uk/~dco/Lectures/An_Introduction_to_Geant4_pdf.pdf


Abbreviations 
 ECS – Experiment Control 

System 

 DCS – Detector Control System 

 TRG – Trigger 

 DAQ – Data Acquisition System 

 CDB – Conditions Data Base 

 RAW – Raw Data 

 CALIB – Calibration Procedures 

 ALIGN – Alignment Procedures 

 RECO – Reconstruction 
Procedures 

 ESD – Event Summary Data 

 AOD – Analysis Object Data  

 

 

 HITS – Simulated energy 
deposition at given location and 
time + MC truth 

 DIGI – Digitization Procedures 
 From analog signal to digital 

representation 

 MC truth – the characteristics 
of the simulated particle and/or 
“labels” to navigate back to the 
array of simulated particles  
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Raw (“Real”) Data Processing 

ECS 

DCS 

TRG 

HTL 

DAQ 

RAW 

CDB 

CALIB 

ALIGN 

RECO ESD 
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Data reduction/abstraction 

hits 
(x1,y1,z1, t1) 

(x2,y2,z2, t2) 

... 

Track finding + 

Track fit  ---> 

Track 1 

Track 2 

Event 1 
Event 2 

Digitization/ 

Reconstruction ---> 

Analog 
signals 

particle 

detector 

element 

Store the 
info for every 

event and  

every track 

<------- 

Magnetic field B: 

reconstruct 

         px 

p  =    py 

          pz 

Track momentum 

helix 
(R, d0, z0) 

x 

y 
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Reconstruction 
 Detector reconstruction 

 Tracking : global methods (Hough transform, combinatorial, etc), local methods (Kalman filter) 
 finding path of charged particles through the detector 

 Calorimeter reconstruction: clusterization algorithms 
 finding energy deposits in calorimeters from charged and neutral particles  

 Particle identification: dE/dx; transition radiation; E/p; Cerenkov angle, etc. 

 Combined reconstruction 
 Track/cluster matching 

 Electron/Photon identification 

 Muon identification 

 Jet finding 

 Calibrations and alignments applied at nearly every step 
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Important figures of merit for 

reconstructed objects 

 Efficiency = (Number of Reconstructed 
Tracks) / (Number of True Tracks)  
  how often do we reconstruct the object – e.g. 

tracking efficiency 

 Resolution = (Measured_Energy – 
True_Energy)/ True_Energy 
  how accurately do we reconstruct a quantity – 

e.g. energy resolution 

 Fake rate = (Number of jets reconstructed as 
an electron) / (Number of jets) 
  how often we reconstruct a different object as 

the object we are interested in – e.g. a jet faking 
a electron  

 

 

For physics analysis it is important 

i) to have high efficiency, good resolution, and low fake rates  

ii) to be able to measure the efficiencies, resolutions and fake rates and their uncertainties 

(not easy) 
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Resolution: useful expressions 
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 Momentum: 

 Energy: 

 Impact parameter: 

 Examples from CDF & D0  

CDF D0 

12 60  (MeV/c2) 

2.5 6.0 (GeV/c2) 

3.0 3.0 (GeV/c2) 

16 14  (%) 

30 30  (μm) 

D.Glenzinski 



Analysis Strategy 
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Q: What constitutes a complete analysis? 

A: A suite of studies which together provide a coherent and 

thorough description of a particular set of data events 

 Should cover all aspects necessary to understand and 

characterize these events 

 Should be well documented via internal notes 

 Should be subjected to peer review 

D.Glenzinski 



Rules of Thumb 
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 Look before you leap 
 Plan your analysis strategy carefully even if the analyses are in general more 

iterative than linear 
 Identify those aspects which will drive the sensitivity 
 What plots, figures, and tables will be important? 
 What data sets will you need? 
 What triggers do these data sets use? 
 What Monte Carlo (MC) samples will you need? 

 Trust but verify 
 Always ask yourself, “Does this make sense?” 
 Know where to find more detailed information if necessary 

 A stitch in time saves nine 
 Sweat the (relevant) details, it will save time in the long run 
 When you spot a problem, take the time to understand it 

D.Glenzinski  



Analysis Basics 
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 Basic inputs to all analyses essentially the same 

 Estimate of signal acceptance after all requirements 

 Estimate of number of expected background events surviving 

all selection requirements 

 Statistical and systematic uncertainties for each 

 Basic types of analyses 

 Counting experiments (cross sections, BR) 

 Determining properties (mass, lifetime) 

 Search for something new (small SM σ*BR, new physics (NP)) 

 As you see, we need both “real” data and MC 

D.Glenzinski  



Physics Analysis Steps 
 Start with the output of reconstruction 

 Apply an event selection based on the reconstructed object quantities 

 Often calculate new information e.g masses of combinations of particles 

 Event selection designed to improve the ‘signal’ to ‘background’ in your 
event sample 

 Estimate  

 Efficiency of selection 

 Background after selection 

 Can use simulation for these – but have to use data-driven techniques to 
understand the uncertainties 

 Make final plot 

 Comparing data to theory 

 Correcting for efficiency and background in data 

 Include the statistical and systematic uncertainties 

 ~TB 

~kB 
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Sensitivity studies (to improve the 

selection criteria/”cuts”) 
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 You first need to choose a “figure-of-merit” (FOM) 

 Obvious for measurements 

 FOM = minimize the expected uncertainty on the quantity 

being measured 

 For searches, a choice needs to be made 

 Standard FOM are 

 Maximize S2/(S+B) 

 Minimize expected limit, <Limit> 

 Minimize necessary luminosity to achieve a given level of 

“discovery”, L5σ 

D.Glenzinski 



Efficiency 
 We factorized the efficiency into several components 

 Used data-driven determinations of efficiency whenever 
possible (for example the trigger efficiencies) 

 Allows some of the work to benefit other analyses since many of 
the efficiencies are independent of a specific analysis 

 Requires some forethought to ensure pieces are consistently 
defined 

 Check the consistency between Data and MC when you 
estimate efficiencies from MC 

 Example 
 α⋅ εtotal = α⋅ εTracking ⋅ ε Trigger ⋅ ε Vertexer ⋅ ε Analysis 

 αis the geometric and kinematic acceptance 

13 D.Glenzinski  



Simulated (“MC”) Data Processing 

RAW + 

MC 

truth 

CDB 

RECO 
MC 

ESD 

Event 

Generator 

Simulation 

Package 

(Geant4): 

Particle 

transport 

Detector 

Description

Geometry, 

Materials 

 

Physics 

List 

HITS: 

E,x,y,z,t 

MC truth 

DIGI 
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Simulation workflow: Example 

Z0 

q 

q 

e+ 

e- 

Physics simulation 

Simulate the physics interaction 

(set in the simulation configuration) 
Output of this part is the 4-

vector’s of the produced 

particles. 

In this case the 4-vector’s of 

the 2 electrons from the Z 

decay.  

Detector Simulation 

Simulate the propagation of the 

electrons through the detector. 

Including: 

-bending in the magnetic field 

-leaving hits in the tracking 

detector elements 

-interacting with the material in 

the detector 

-interacting in the calorimeter 

(detailed description of the EM 

shower) 

particle 

detector 

element 

Electronics Simulation 

Simulate the response of the 

detector elements to the ‘hits’ 

from the electron. 

Simulate the voltage pulse on 

the detector and how the 

detector electronics works. 

The output of this stage is very 

similar to the raw data from 

the detector. 

(but we keep the truth 

information). 

Detector simulation step is very CPU intensive. Requires huge computing resources.  J.Boyd 



 Mature, extensible kernel 
 Powerful geometry modeler, E/B fields, track stacking 

 Diverse set Physics models (mostly 2 alternatives) 
 e-/e+/gamma 10s eV to TeV 
 Hadron-nucleus interactions up to 1 TeV 
 Neutron interactions from thermal to 1 TeV 
 Ion-ion interaction from 100s MeV/n to 10 GeV/n 
 Optical, weak (decay of unstable and radioactivity) 

 Tools for input, output, visualization, scripting 

 Every increasing use 
 Over 2000 citations for G4 NIMA paper (2003) 

 Product of collaboration of 90 contributors 
 Effort: HEP (75%), Biology/medical (15-20%), space (5-10%). 

 Open Source: Distributed via web. G4 license since 2006.  

Geant4 Toolkit, SNA-MC 2010 16 

Geant4 toolkit on one slide 



High Energy Physics Experiments 



Space: radiation effects, science  



Geant4 @ Medical Science 

 Four major use cases 
 Beam therapy 
 Brachytherapy 
 Imaging 
 Cell Irradiation study 

19 Geant4 Toolkit, SNA-MC 2010  



Some Basics 
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 Simplest Geant simulation needs three classes and a main to 

run 

 Geometry 

 Primary Generator Action 

 Physics List 

 Running Geant4 

 Hard code your commands into your main 

 Use a macros – a script containing a list of commands executed 

sequentially 

 Use a GUI 

Main 

Event 

Generator 
Geometry Physics 

D.Oxley 



Defining your materials 
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 Materials are defined based upon their chemical structure 

 First define your element(s) 

 Then define your material 

 Assigned weighted quantities of element to material 

 Two examples: Argon (element), Water (composite) 

 Atomic number, molar mass, density 

 Example: Water H 2O 
 Two ingredients : Two hydrogen , one oxygen 
 Define hydrogen 
 Define Oxygen 
 Define Water 
 Assign two hydrogen atoms and one oxygen atom to water 

 See also G4NISTManager class, it allows to build materials (and 
elements) via names 

D.Oxley 



Defining your world 
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 Define all objects within the world 

 Shape   SOLID (G4SOLID) 

 Size   LOGIC (G4LOGIC) 

 Material   PHYSICAL (G4PVPLACEMENT) 

 Position 

 Use the classes provided by Geant4 

 Example: Box, Cylinder, Sphere 

 Many more existing classes, User’s Guide (4.1.2) 



Defining a source 
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 Two types covered here 

 Beams 

 Stationary sources 

 Beams are defined in a source file in the Primary Generator Action 

 Stationary sources can be defined there using random numbers to 
generate isotropic distributions 

 Or use pre-defined class in a macro G4GeneralParticleSource 

 All primary generators are defined in a user Primary Generator 
Action (a class derived from 
G4VUserPrimaryGeneratorAction);besides 
G4GeneralParticleSource there is G4ParticleGun which is more 
simple generator 

 
D.Oxley 



Physics List 
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 Geant4 doesn’t “automatically” include any physics 

 You need to tell Geant4 what physical interactions you are interested in 

 Originates from particles physics background where “new physics” 
would need implementing 

 Include: 
 Particles you want (bosons, mesons etc.) 
 Interactions you want (photoelectric, Compton, Pair production) 
 The correct energy range: different for the energy range you are interested 

in 
 Standard, low energy, very low energy 
 Beware of your cut values 

 Geant4 provides a set of physics lists and it is recommended to users to 
start with one of these. See more details 
at:http://geant4.web.cern.ch/geant4/support/index.shtml  

 --> Physics list 

D.Oxley 

http://geant4.web.cern.ch/geant4/support/index.shtml
http://geant4.web.cern.ch/geant4/support/index.shtml
http://geant4.web.cern.ch/geant4/support/index.shtml
http://geant4.web.cern.ch/geant4/support/index.shtml
http://geant4.web.cern.ch/geant4/support/index.shtml


Physics List: Cuts 
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 Cut value defines the extent to which a particle is tracked 

 Cuts are defined in distance (range                  ) 

 Converted into energy based on the material 

 100keV 

    Cut value = 1mm 

γ100 KeV γ100 KeV 

Electron won’t be tracked 

Distance < Cut 

Electron will be tracked 

Distance > Cut D.Oxley 



Extracting information from Geant4 
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 Two additional classes (minimum): 
 Sensitive Detector 

 Hit 

 (Event Action) is useful, but not essential 

 Which volumes are made sensitive is defined in the geometry class 
 At logical stage 

 Hit defines the object of an interaction 
 Energy deposit, Position, Interaction type, Detector segment 

 Hits will only be defined in sensitive detectors (not in passive volumes) 

 Hits are assigned their attributes (Energy, position) not in the hit class, but in 
the sensitive detector class 

 User can extract info at all stages of event processing: stepping, tracking, event, 
run action. Besides that he can use scorer classes which are a kind of ready to be 
used  by sensitive detectors for accounting various quantities 

Geometry 
Sensitive 

Detector 
Hit 

Output 
D.Oxley 



Compare C++ codes 
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 Geometry: assigns a volume to be sensitive 

 Sensitive detector: 

 builds a Hit 

 assigns it to HitCollection 

 Hit class defines attributes of the hit 

 Sensitive Detector either: 

 outputs HitCollection  

 or sends HitCollection to EventAction file 

 EventAction: 

 necessary to process several HitCollections 

 examine several HitCollections, establish HitCollection 

D.Oxley 



Geant4 is MORE… 
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 Kernel: 3 lectures 

 Geometry: 4 lectures 

 Materials: 1 lecture 

 Physics: 3 lectures 

 EM Physics: 2 lectures 

 Hadron Physics: 3 lectures 

 Physics Lists: 1 lecture 

 Visualization: 3 lectures 

 Primary particles: 1 lecture 

 Analysis: 1 lectures 

 

 Upgrading: 1 lecture 

 User interface: 2 lectures 

 Event biasing: 1 lectures 

 User documentation and 

examples: 2 lectures 



Suggestions (not only for Geant4) 
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DO’s 

 Consult the user guide with any 
problems or for more detail 

 Consult the HyperNews forum if 
you get stuck 

 Just start playing around with one 
of the examples 

 If you get a bug in it you can’t fix, 
you can always download it again 

 Always think about what you need 
in terms of physics and cut values 

 Do discard physics and events you 
don’t need: you are the expert of 
your work 

DON’T’s 

 Treat this lecture as a replacement 
of the User Guide: 

 Geant4 is very complex and cannot 
be explained fully in few slides 

 Don’t wait until you are a C++ 
expert before you start 

 Don’t read the whole user guide 
before you start 

 Don’t assume Geant4 will “just get 
it right” 

 Don’t let too much detail slow you 
down 

D.Oxley 

Use the Geant4 novice examples to start with  

(sec. 9.1 of the Users Guide for Application developers) 

http://geant4.fnal.gov/index_web/novice_examples_explained.shtml 

http://geant4.fnal.gov/index_web/novice_examples_explained.shtml


Introduction to ROOT - Jan Fiete 

Grosse-Oetringhaus 
30 

ROOT in a Nutshell 
 ROOT is a large Object-Oriented data handling and analysis 

framework 
 Efficient object store scaling from KB’s to PB’s 

 C++ interpreter 

 Extensive 2D+3D scientific data visualization capabilities 

 Extensive set of multi-dimensional histograming, data fitting, 
modeling and analysis methods 

 Complete set of GUI widgets 

 Classes for threading, shared memory, networking, etc. 

 Parallel version of analysis engine runs on clusters and multi-core 

 Fully cross platform: Unix/Linux, MacOS X and Windows 



Introduction to ROOT - Jan Fiete 

Grosse-Oetringhaus 
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ROOT in a Nutshell (2) 

 The user interacts with ROOT via a graphical user interface, 

the command line or scripts 

 The command and scripting language is C++ 

 Embedded CINT C++ interpreter 

 Large scripts can be compiled and dynamically loaded 

 

And for you? 

ROOT is usually the interface (and sometimes the barrier)  

between you and the data 



Introduction to ROOT - Jan Fiete 

Grosse-Oetringhaus 
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The ROOT Libraries 
 Over 2,500 classes 

 3,000,000 lines of code 

 CORE (8 Mbytes) 

 CINT (2 Mbytes) 

 Most libraries linked on 
demand via plug-in 
manager (only a subset 
shown) 

 100 shared libs 



Introduction to ROOT - Jan Fiete 

Grosse-Oetringhaus 
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ROOT: An Open Source Project 
 The project was started in Jan 1995 

 First release Nov 1995 

 The project is developed as a collaboration between: 
 Full time developers: 

 7 people full time at CERN (PH/SFT) 

 2 developers at Fermilab/USA 

 Large number of part-time contributors (160 in CREDITS file) 

 A long list of users giving feedback, comments, bug fixes and many small contributions 

 5,500 users registered to RootTalk forum 

 10,000 posts per year 

 An Open Source Project, source available under the LGPL license 

 Used by all HEP experiments in the world 

 Used in many other scientific fields and in commercial world 



Introduction to ROOT - Jan Fiete 
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Some ROOT Statistics 

 ROOT binaries have been downloaded about 600,000 times 

since 1997 

 The estimated user base is about 20,000 people 



Introduction to ROOT - Jan Fiete 
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ROOT Application Domains 

Data Storage: Local, Network 

Data Analysis & Visualization 



Introduction to ROOT - Jan Fiete 
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CINT in ROOT 

 CINT is used in ROOT: 

 As command line interpreter 

 As script interpreter 

 To generate class dictionaries 

 To generate function/method calling stubs 

 Signals/slots with the GUI 

 The command line, script and programming language become 
the same 

 Large scripts can be compiled for optimal performance 



Introduction to ROOT - Jan Fiete 
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First CINT Example 

$ root 

root [0] 344+76.8 

(const double)4.20800000000000010e+002 

root [1] float x=89.7; 

root [2] float y=567.8; 

root [3] x+sqrt(y) 

(double)1.13528550991510710e+002 

root [4] float z = x+2*sqrt(y/6); 

root [5] z 

(float)1.09155929565429690e+002 

root [6] .q 

$ 

Display online help with: root [0] .h 



Introduction to ROOT - Jan Fiete 
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Named Macros 
 It is quite cumbersome to type the same lines again and again 

 Create macros for commonly used code 

 Macro = file that is interpreted by CINT 

 

 

 

 

 Execute with  root [0] .x mymacro.C(10) 

 Or   root [0] .L mymacro.C 

    root [1] mymacro(10) 

int mymacro(int value) 

{ 

   int ret = 42; 

   ret += value; 

   return ret; 

} 

saved in mymacro.C 



Introduction to ROOT - Jan Fiete 
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Compile Macros – Libraries 

 "Library": compiled code, shared library 

 CINT can call its functions! 

 Building a library from a macro: ACLiC 

(Automatic Compiler of Libraries for CINT) 

 Execute it with a “+” root [0] .x mymacro.C(42)+ 

 Or    root [0] .L mymacro.C+ 

     root [1] mymacro(42) 

 No Makefile needed 

 CINT knows all functions in the library mymacro_C.so/.dll 



Introduction to ROOT - Jan Fiete 
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Compiled vs. Interpreted 
 Why compile? 

 Faster execution, CINT has some limitations… 

 Why interpret? 

 Faster Edit → Run → Check result → Edit cycles ("rapid 
prototyping"). Scripting is sometimes just easier 

 So when should I start compiling? 

 For simple things: start with macros 

 Rule of thumb 
 Is it a lot of code or running slow?  Compile it! 

 Does it behave weird?  Compile it! 

 Is there an error that you do not find  Compile it! 
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Unnamed Macros 

 No function, just statements  

 

 

  

 Execute with root [0] .x mymacro.C 

 No functions, thus no arguments 

 Named macro recommended! 

{ 

   float ret = 0.42; 

   return sin(ret); 

} 

saved in mymacro.C 
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ROOT Types 

 You can use native C types in your code (as long as you don’t 

make your data persistent, i.e. write to files) 

 ROOT redefines all types to achieve platform independency 

 E.g. the type int has a different number of bits on different 

systems 

 int  Int_t  float  Float_t   

double  Double_t  long  Long64_t (not Long_t) 

etc. 

 See $ROOTSYS/include/Rtypes.h 
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Histograms & Graphs 

 Container for binned data 

 Most of HEP’s distributions 

 Container for distinct points 

 Calculation or fit results 

Histogram Graph 
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Histograms 
 Histograms are binned data containers 

 There are 1, 2 and 3-dimensional histograms  TH1, TH2, TH3 

 The data can be stored with different precision and in different types (byte, 

short, int, float, double)  

 TH1C, TH1S, TH1I, TH1F, TH1D  

(same for TH2, TH3) 

 Histogram Example 

hist = new TH1F("hist", "Vertex 

    distribution;z (cm);Events", 20, -10, 10); 

hist->Fill(0.05); 

hist->Fill(-7.4); 

hist->Fill(0.2); 

hist->Draw(); 

NB: All ROOT classes start with T 

Looking for e.g. a string? Try TString 
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Graphs 
 A graph is a data container filled with distinct points 

 TGraph: x/y graph without error bars 

 TGraphErrors: x/y graph with error bars 

 TGraphAsymmErrors: x/y graph with asymmetric error bars 

Graph Example 

graph = new TGraph; 

graph->SetPoint(graph->GetN(), 1, 2.3); 

graph->SetPoint(graph->GetN(), 2, 0.8); 

graph->SetPoint(graph->GetN(), 3, -4); 

graph->Draw("AP"); 

graph->SetMarkerStyle(21); 

graph->GetYaxis()->SetRangeUser(-10, 10); 

graph->GetXaxis()->SetTitle("Run number"); 

graph->GetYaxis()->SetTitle("z (cm)"); 

graph->SetTitle("Average vertex position"); 
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Graphs (2) 

$ROOTSYS/tutorials/graphs/gerrors2.C 

TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh) 

TGraph(n,x,y) 

TCutG(n,x,y) 

TGraphErrors(n,x,y,ex,ey) 

TMultiGraph 
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 You can draw with the command line 

 The Draw function adds the object to 

the list of primitives of the current pad 

 If no pad exists, a pad is automatically 

created 

 A pad is embedded in a canvas 

 You create one manually with new 

TCanvas 

 A canvas has one pad by default 

 You can add more 

Hello 

root [ ] TLine line(.1,.9,.6,.6) 

root [ ] line.Draw() 

root [ ] TText text(.5,.2,”Hello”) 

root [ ] text.Draw() 

Graphics Objects 

Canvas 

Pad 
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TButton 

TLine TArrow TEllipse 

TCurvyLine 

TPaveLabel 

TPave 

TDiamond 

TPavesText 

TPolyLine 
TLatex 

TCrown 

TMarker 

TText 

TCurlyArc 

TBox 

More Graphics Objects 

Can be accessed with the toolbar 

View  Toolbar (in any canvas) 
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Full LateX 
support 

on screen 
and 

postscript 

TCurlyArc 
TCurlyLine 
TWavyLine 

and other building 
blocks for 

Feynmann diagrams 

$ROOTSYS/tutorials/graphics/feynman.C 

$ROOTSYS/tutorials/graphics/latex3.C 

Formula or  

diagrams can 

be 

edited with the 

mouse 

A lot more examples come with the ROOT installation 
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Graphics Examples 

TGLParametric 

TF3 
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Input/Output 

Object in 

Memory 

Streamer 

http 

sockets Net File 

Web File 

XML XML File 

SQL RDBMS 

B
uf

fe
r 

The automatically generated ROOT streamer for each class streams all class members, resolves circular 

dependencies and multiply referenced objects 

 No streamer function needs to be written 

 No need for separation of transient and persistent classes 

Local File on disk 
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Files 

 TFile is the class to access files on your file system (and 

elsewhere) 

 A TFile object may contain directories (TDirectory), like a 

Unix file system 

 ROOT files are self describing 

 Dictionary for persistent classes written to the file 

 Support for Backward and Forward compatibility 

 Files created in 2006 must be readable in 2020 
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File Example 
void keyWrite() { 

   TFile f("file.root", "new"); 

   TH1F h("hist", "test", 100, -3, 3); 

   h.FillRandom("gaus", 1000); 

   h.Write() 

} 

void keyRead() { 

   TFile f("file.root"); 

   TH1F *h = (TH1F*) f.Get("hist"); 

   h.Draw(); 

} 

This works as well for your own class! 
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1 billion people surfing 
the Web  

LHC: How Much Data? 

105 

104 

103 

102 

Level 1 Rate  

(Hz) 

High Level-1 Trigger 

(1 MHz) 
High No. Channels 

High Bandwidth 

(500 Gbit/s) 

High Data Archive 

(5 PetaBytes/year) 

10 Gbits/s in Data base 

LHCB 

KLOE 

HERA-B 

CDF II 

CDF 

H1 

ZEUS 

UA1 

LEP 

NA49 
ALICE 

Event Size (bytes) 

104 105 106 

ATLAS 

CMS 

106 

107 

STAR How to store large number of 

events and data volumes efficiently? 

 ROOT Trees 
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What is a ROOT Tree? 
 Trees have been designed to support very large collections of 

objects. The overhead in memory is in general less than 4 
bytes per entry. 

 Trees allow direct and random access to any entry (sequential 
access is the most efficient) 

 Trees are structured into branches and leaves. One can read a 
subset of all branches 

 High level functions like TTree::Draw loop on all entries 
with selection expressions 

 Trees can be browsed via TBrowser 

 Trees can be analyzed via TTreeViewer 
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Stored Trees vs. Memory 
Tree On Disk One instance in memory 
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Trees: Split Mode 

 The tree is partioned in branches 

 Each class member is a branch (in split mode) 

 When reading a tree, certain branches can be switched off  
 speed up of analysis when not all data is needed 

point 

x 

y 

z 

x x x x x x x x x x 

y y y y y y y y y y 

z z z z z z z z z z 

Branches File 1 "Event" 

Events 
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TTree - Writing 

 You want to store 1 million objects of type TMyEvent in a 

tree which is written into a file 

 Initialization 

 

 

 Fill the tree (1 million times) 

 TTree::Fill copies content of  

member as new entry into the tree 

 Flush the tree to the file,  

close the file 

myEvent->SetMember(…); tree-
>Fill(); 

tree->Write(); 

f->Close(); 

TFile* f = TFile::Open("events.root", "RECREATE"); 
TTree* tree = new TTree("Events","Event Tree"); 
TMyEvent* myEvent = new TMyEvent; 
TBranch* branch = tree->Branch("myevent", 
   "TMyEvent", &myEvent); 



Introduction to ROOT - Jan Fiete 

Grosse-Oetringhaus 
59 

TTree - Reading 

 Open the file, retrieve the tree and connect the branch with a 

pointer to TMyEvent 

 

 

 

 Read entries from the tree and use the content of the class 

TFile *f = TFile::Open("events.root"); 

TTree *tree = (TTree*)f->Get("Events"); 

TMyEvent* myEvent = 0; 

tree->SetBranchAddress("myevent", &myEvent); 

Int_t nentries = tree->GetEntries(); 

for (Int_t i=0;i<nentries;i++) { 

  tree->GetEntry(i); 

  cout << myEvent->GetMember() << endl; 

} 

A quick way to browse 

through a tree is to use 

a TBrowser 
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Fitting 

 Fitting a histogram or graph 

 With the GUI 
 If you just try which functions works well or 

need a single parameter 
 Right click on graph or histogram  
 Fit panel 

 With the command line / macro 
 If you fit many histograms/graphs or several 

times 

hist->Fit("gaus") 

hist->FindFunction("gaus")->GetParameter(0) 

Fit parameters printed to the screen 
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ROOT is MORE…. 
 In this talk, I presented the most basic classes typically used during 

physics analyses 

 ROOT contains many more libraries, e.g. 

 FFT library 

 Oracle, MySQL, etc interfaces 

 XML drivers 

 TMVA (Multi Variate Analysis) 

 GRID, networking and thread classes 

 Interfaces to Castor, Dcache, GFAL, xrootd 

 Interfaces to Pythia, Geant3, Geant4, gdml 

 Matrix packages, Fitting packages (i.e. RooFit), etc 

 Geometry modeler 
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One Example: PROOF 
 Parallel ROOT Facility 

 Interactive parallel analysis on a local cluster 

 Parallel processing of (local) data (trivial parallelism) 

 Output handling with direct visualization 

 Not a batch system 

 PROOF itself is not related to Grid 

 Can access Grid files 

 The usage of PROOF is transparent 

 The same code can be run locally and in a PROOF system (certain rules have to 

be followed) 

 PROOF is part of ROOT Data does not need to be copied 

Many CPUs available for analysis 

 much faster processing 
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root 

Remote PROOF Cluster 

Data 

root 

root 

root 

Client –  
Local PC 

ana.C 

stdout/result 

node1 

node2 

node3 

node4 

ana.C 

root 

PROOF Schema 

Data 

Proof master 

Proof slave 

Result 

Data 

Result 

Data 

Result 

Result 
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