NICA/MPD project Flagship HEP project at JINR

September 28, 2011

A. Vodopyanov, CERN, ISTC

Joint Institute for Nuclear Research (JINR) -

International Intergovernmental Organization established through the Convention signed on 26 March 1956 by eleven founding States and registered with the United Nations on 1 February 1957

HISTORY

OF

High Energy Physics BASIC INSTALLATIONS at JINR

About history and structure of JINR

The pioneer accelerator for HEP: Synchrophasotron

HEP

.......

- designed & constructed under the leadership of acad. V. I. Veksler
- put into operation in April, 1957
- the world largest accelerator at that time

10 GeV protons

Nuclotron

 the first SC accelerator of *heavy ions* (*p* of 12 GeV)
 was designed, constructed & put into operation under the leadership of acad. A.M. Baldin

 JINR HEP basic facility, *in operation since* '93
 based on the unique technology of SC fast cycling magnets developed in JINR
 provides proton, polarized deuteron & multi charged ion beams

REVIEW

OF INTERNATIONAL COOPERATION

JINR HEP Scientific Links

A. Vodopyanov, CERN, ISTC

p+p @ 14 TeV Pb+Pb @ 5.5A TeV

Largest dipole magnet (850 ton, 9×7×4.5 м) and particle detectors

ATLAS detector

Diameter
Barrel toroid length
End-cap end-wall chamber span
Overall weight

25 m 26 m 46 m 7000 Tons

JINR contribution to ATLAS

Transition Radiation Tracker based on straw tubes assembly

Barrel Tile Calorimeter; LqAr Hadronic End-Cap Cal. Muon Chambers

Compact Muon Solenoid- CMS

Detector subsystems are designed to measure: the energy and momentum of photons, electrons, muons, jets, missing E_T up to a few TeV

JINR Participation in CMS Construction

JINR participates in the CMS in a framework of the RDMS CMS

Collaboration

CURRENT AND FUTURE PROGRAMME

NICA/MPD project

<u>http://nica.jinr.ru/</u> (continuous data base update) In 2009 the JINR Committee of Plenipotentiary (CP) approved the 7-th Plan for the development of JINR, based on concentration of resources for updating the accelerator & reactor base of the Institute

The **CP** also supported the efforts being taken towards integration of the JINR basic facilities into the common European research infrastructure

The project NICA/MPD

(Nuclotron based Ion Collider fAcility & Multi Purpose Detector) aimed to study of hot & dense baryonic matter (DBM) & spin physics with polarized protons & deutrons - is the JINR flagship project in HEP

It was initiated & led by

A.N.Sissakian

September 28, 2011

A.Vodopyanov, CERN, ISTC

Veksler & Baldin Laboratory of High Energy Physics

Veksler & Baldin Laboratory of High Energy Physics (future)

September 28, 2011

A.Vodopyanov, CERN, ISTC

Fields of research

the study of Dence Barionic Matter could provide us with information on

-in-medium properties of hadrons

& nuclear matter equation of state (EOS)

-onset of deconfinement (OD) & chiral symmetry restoration (CSR),

-phase transition, mixed phase & critical end-point (CEP)

-possible local parity violation in strong interaction (LPV)

the study of spin physics is aimed

- to shed light on the origin of spin
- to define the nucleon spin structure

September 28, 2011

A.Vodopyanov, CERN, ISTC

NICA/MPD physics (at $\sqrt{S_{NN}} = 4 - 11 \text{ GeV}$)

Creation of deconfined QGP state in HI collisions, study of fundamental properties of QCD in various regions of QCD PD

Lattice QCD 200 Me/ **Perfect fluid** Quarks and Gluons inivers Critical point? emperature deconfinement transition Hadrons 100 FARSSOO Quarkyonic phase NICA-MPD, Proto-Color Super-Neutron stars conductor Nuclei nnnp Net baryon density n/ n_o Compact Stars $n_0 = 0.16 \text{ fm}^{-3}$

QCD phase diagram

The plan of Nuclotron and experimental zones

September 28, 2011

A.Vodopyanov, CERN, ISTC

Nuclotron slow extraction

				Example 5 Beam profiles at the F_5 focus.				
Par	ameter	@	Units	Value	Deuterons, p	_{beam} = 4.3 GeV	$\sigma/c, \sigma_x = 2.6 \text{ mm}, \sigma_y = 3.0$	mm
Momentum ra	nge	Z/A = 1/2	Gev/c/amu	0.6 - 6.8				₿
Momentum sp	oread, σ		%	0.04 - 0.08				Ħ
Extraction time	e		sec	10				H
Beam emittan	ce	P _{max}	mm∙mr	2π				Ħ
Beam size in a	a waist, σ	P _{max}	mm	<u><</u> 1				⊞
Extraction effi	ciency		%	> 90	/ #			Ħ
Beams		p, d, c	I↑, α, ^{6,7} Li, ^{10,11} B, ¹² C,	¹⁴ N, ²⁴ Mg, ⁵⁶ Fe	-32 -16 0 X, n	16 32 nm	-32 -16 0 16 y, mm	32

t, ms

	Nuclotron beam intensity (particle per cycle)					
Beam	Current	lon source type	New ion source + booster <mark>(2013)</mark>			
ρ	3·10¹⁰	Duoplasmotron	5·10 ¹²			
d	3⋅10 ¹⁰	,,	5·10 ¹²			
⁴ He	8·10 ⁸	,,	1.10 ¹²			
d↑	2·10 ⁸	ABS ("Polaris")	1·10 ¹⁰ (SPI)			
⁷ Li	8·10 ⁸	Laser	5·10 ¹¹			
^{11,10} B	1.10 ^{9,8}	,,				
¹² C	1.10 ⁹	,,	2·10 ¹¹			
²⁴ Mg	2·10 ⁷	,,				
¹⁴ N	1.10 ⁷	ESIS ("Krion-2")	5·10 ¹⁰			
²⁴ Ar	1.10 ⁹	,,	2·10 ¹¹			
⁵⁶ Fe	2·10 ⁶	,,	5·10 ¹⁰			
⁸⁴ Kr	1·10 ⁴	,,	1·10 ⁹			
¹²⁴ Xe	1·10 ⁴	,,	1·10 ⁹			
¹⁹⁷ Au	-	,,	1·10 ⁹			

Three stages of Nuclotron development

□ Nuclotron-M

2010

cryogenic syst. modernization, linac corr., new ions (->Xe), vacuum x10^-2 impr., PS, magnetic field (-> 1.9T), beam adiabatic capture, beam diagnostic, orbit correction, RF run #42 (completing) under preparation (**DONE**)

Nuclotron-N	+ Krion-6T, LU-20M, RF	2012
Nuclotron-N*	+ New Linac, Booster	2014

The beams to be provided by Nuclotron-N^{*} (ion kinetic energy in GeV /u):

p, p ↑:	5 ÷ 12.6
d, d ↑:	2÷5.9
Li ÷ Au:	1 ÷ 4.5

NICA

Nuclotron based Ion Collider fAcility

NICA working schema (preliminary)

Collider NICA

Collider–general parameters (preliminary)

Β ρ max [T·m]	45.0
lon kinetic energy (Au79+), [GeV/u]	1.0 ÷ 4.56
Dipole field (max), [T]	1.8
Free space at IP (for detector)	9 m
Beam crossing angle at IP	0
Vacuum, [Torr]	10 ⁻¹¹
Luminosity per one IP, cm ⁻² ·s ⁻¹	0.02÷5.0 ·10^27

Structure & details of the storage rings - subject of discussion & consideration by the MAC

Accelerator expertise

by the Machine Advisory Committee (MAC) Members ->

MAC meetings:

previous meetings in Dubna
 January 2010,
 October 2010
 June 2011
 regular meetings

via video-conference

NICA TDR (vol. I & II) is available since August 2009

- Boris Sharkov, FAIR & ITEP, chair
- Pavel Beloshitsky, CERN
- Sergei Ivanov, IHEP
- Thomas Roser, BNL
- Alexei Fedotov , BNL
- Markus Steck, GSI
- Nicholas Walker, Desy
- Sergei Nagaitsev, FNAL
- Alexander Zlobin, FNAL
- Takeshi Katayama, Tokyo Univ.
- Rolf Stassen, FZJ
- Yuri Senichev, FZJ
- Evgeny Levichev, BINP
- Victor Yarba, FNAL
- Pavel Zenkevich, ITEP
- Valeri Lebedev, FNAL

MPD

Multi-Purpose Detector

MPD work packages & corresponding groups

- ≻ Magnet
- > TPC (+prototyping)
- > ECal
- > TOF
- > ZCal
- > FFD
- ≻ CPC
- > Straw wheels

> EC DC > IT > DAQ Slow Control Infrastructure & Integration > Software Physics performance

The CBM-MPD SSD consortium: GSI - JINR - IHEP - ... in IT silicon module development is well progressing

A. Vodopyanov, CERN, ISTC

September 28, 2011

A.Vodopyanov, CERN, ISTC

Integration of the Solenoid

Magnet

MAIN PARAMETERS OF THE SOLENOID

Central field, T	0.5
Ampere-turns of the solenoid coil, MA	2.186
Design current density, MA/m ²	64.5
Stored energy, MJ	7.53
Nominal operational current, kA	1.36
Weight of the magnet, ton	440

Magnetic Field Distribution

B_{max}=0.65 T B_{iron}=1.47 T

Distribution of the magnetic induction in the magnet structural parts

Distribution of the magnetic induction in the area of tracker

September 28, 2011

A.Vodopyanov, CERN, ISTC

Time Projection Chamber (TPC)

two track resolution < 1 cm Mom. resolution $\Delta p/p < 3\%$ (0.2<p<1 GeV/c) A.Vodopy

September 28, 2011

TPC Readout Chamber

Pad Plane:
2 sets of 4x10 mm & 6x12mm pads
256 channels of readout electronics

FEE :

Amplifier/Shaper – PCA16/ILC and PASA
 12 bits ADC – ADC12EU050
 FPGA VIRTEX5

September 28, 2011

A.Vodopyanov, CERN, ISTC

Time Of Flight (TOF) system

Dimensions

barrel: 5 m (length), 2.5 m (diameter) endcap: 2 x 2.5 m (diameter) disks Gas: 90% $C_2H_2F_4$ + 5% iC_4H_{10} + 5% SF_6 Segmentation (barrel)

12 sectors

module: 10-gap RPC, 48 pads 2.5x3.5 cm² or 30-50 cm long and 1-2 cm wide strips endcaps

24 mRPC 53,37,21x80-100 cm² pad size : 4x4 cm² geom. efficiency ~ 95%

Basic requirements

- Coverage: barrel > 30 m²,
- Endcap covers down to |η|<3</p>
- σ ~ 80 ps (100 ps overall)

RPC prototype (China group)

Plan to continue optimization

ECAL – "shashlyk" type modules with APD readout (Lead plates (0.275 mm) and plastic scintillator (1.5 mm), the radiation length of tower 18X₀ (40 cm)) The active area of APD- 3x3 mm; density of pixels in APD – 10⁴/mm²

MPD performance for physics tasks

was evaluated using a powerful tool based on **MPDRoot** software including various physics generators,

Detector simulation, event reconstruction

& analysis

September 28, 2011

A.Vodopyanov, CERN, ISTC

Angle coverage of MPD

September 28, 2010

-

A.Vodopyanov, CERN, ISTC

Particle yields in Au+Au collisions √s_{NN} = 7.1 GeV (10% central)

Luminosity $L = 10^{27} \text{ cm}^{-2} \text{s}^{-1}$ Event rate (central) 700 Hz

Particle (mass)	Multi- plicity	decay mode	yield (s ⁻¹)	yield 10w
K+ (494)	55		7.7 10 ³	4.6 [.] 10 ¹⁰
K⁻ (494)	16		2.2 ·10 ³	1.3·10 ¹⁰
ρ (770)	23.6	e+e-	1.6 ·10 ⁻²	9.4·10 ⁴
ω (782)	14.2	e+e-	1.4.10-2	8.6 [.] 10 ⁴
φ (1020)	2.7	e+e-	1.1.10-2	6.8 [.] 10 ⁴
∃ ⁻ (1321)	2.4	Лп⁻	67	4.0 [.] 10 ⁸
Ω ⁻ (1672)	0.16	ΛK⁻	1.5	9.2·10 ⁶
D ⁰ (1864)	7.5 10 ⁻⁴	K+u-	2.0.10-4	1200
J/ψ (3097)	3.8 · 10 - 5	e+e-	8.0 ⁻⁵	480

September 28, 2011

Vertex & hyperon decay reconstructions

Lepton pairs (e⁺e⁻) reconstruction

September 28, 2011

A.Vodopyanov, CERN, ISTC

FIXEDTARGET

PROGRAM (DISCUSSION STARTED SPRING 2010)

Fixed target experimental area

Should be properly developed in parallel with Nuclotron upgrade & NICA collider construction This is the high priority task, because it provides:

relevant experimental program in BM, (could be started in 2014)

proper monitoring of Nuclotron performance & beam parameters

highly required beams

- to test detector subsystems

development of modern experimental *infrastructure*, organization necessary services, & training of corresponding *personal*

> possibility of the JINR HEP facility integration into the common European research infrastructure

Nuclotron external beam lines

5v

Baryonic Matter @ Nuclotron (BM@N)

Schedule (preliminary)

Start of project preparation 2	2010
 presentation for the consideration at PAC 2 choice of magnet (?) & start its modernization working on the project 	2012
 experimental area preparation 2 major subdetector for the starting kit are prototyped & mounted 	2012
BMN starting kit commissioning 2	2013
□ Start of physics runs 2	2014

Fixed target area working plans (very preliminary draft)

2011	2012	2013	2014	2015	2016
bld.205	reparation + inf	rastructure			
extracte	d beam channe	ls update			
BMN inf	rastructure prep	paration			
BM@N	magnet putting	in operation			
BM@N	detector assem	bly & commiss	sioning (<i>min. co</i>	nfiguration)	
runs w	vith BM@N det	ector			
test be	ams for detecto	or elements R8	D		

<u>Energy regions covered by present &</u> future facilities (experiments)

Summary

NICA/MPD project to study hot & dense baryonic matter is progressing well

sub-project Nuclotron-M completed !

new sub-project Nuclotron-N presented for the consideration at PAC in 2011 (APPROVED!)
 the 1st stage of MPD conception is completed, & the project is recommended for realization by PAC in 2010

the scientific program in **Dense Baryonic Matter** will be extended

by Fix Target facility – BM@N

new collaborations are invited to present proposals

good reasons to start the joint program in DBM

<u>RF Prime Minister V.V. Putin at NICA, 5 July 2011</u>

THANK YOU FOR YOUR ATTENTION

September 28, 2011

A.Vodopyanov, CERN, ISTC

S P A R E S

February 9, 2011

A.Vodopyanov, Pretoria, South Africa

Модель события Pb-Pb взаимодействия

ALICE-GRID: Распределенная сеть обработки экспериментальных данных от США и Мексики до Японии

2008 — подготовлен полный модуль для ускорителя SIS100 в GSI (работа профинансирована Европейским грантом)

> Созданная технология может быть использованиа в бустере & коллайдере при поле 2Т

7-8 июня 2010 года

А.С.Водопьянов, Томск

