

Higgs + jet in the Regge limit

Giulio Falcioni based on 2504.06184 with Vittorio Del Duca

CERN - 26th May 2025

1/43

G. Falcioni (UZH and UniTo)

H+jet in the Regge limit

CERN - 26th May 2025

Outline

The Regge limit

Theoretical tools

- Infrared structure
- Evolution in rapidity
- The Higgs boson impact factor
- 4 Conclusion and outlook

Outline

The Regge limit

Fheoretical tools

- Infrared structure
- Evolution in rapidity
- 3 The Higgs boson impact factor
- 4 Conclusion and outlook

The original problem

- Strong ordering in Mandelstam invariants $s_{ij} = (p_i + p_j)^2$ $s_{12} \gg s_{14}$.
 - Signature symmetry $s_{12} \simeq -s_{13}$.
- Large rapidity separation $y_4 \gg y_3$.

$$p_k^{\perp} = p_k^x + i p_k^y,$$

 $p_k^+ = (p_k^0 + p_k^z) = |p_k^{\perp}| e^{y_k},$
 $p_k^- = (p_k^0 - p_k^z) = |p_k^{\perp}| e^{-y_k}$

Extend to **multi-Regge** limit $y_i \gg y_j$, i, j in final state.

Insight into the all-order structure

- Loop counting $a_s = \frac{g^2}{16\pi^2}$
- High-energy logarithm, here

$$L = \log \frac{s_{12}}{s_{14}} + \log \frac{s_{13}}{s_{14}} \equiv \log \frac{s}{t} + \log \frac{u}{t} = \log \frac{s}{t} - i\frac{\pi}{2}$$

• Double expansion of the amplitude $\hat{\mathcal{M}} = \frac{\mathcal{M}}{\mathcal{M}_0}$

$$\hat{\mathcal{M}} = 1 + \begin{cases} a_{s} \mathcal{L} \mathcal{M}^{(1,1)} \\ + & a_{s}^{2} \mathcal{L}^{2} \mathcal{M}^{(2,2)} \\ \mathsf{LL} \end{cases} + \begin{cases} a_{s} \mathcal{M}^{(1,0)} \\ + & a_{s}^{2} \mathcal{L} \mathcal{M}^{(2,1)} \\ \mathsf{NLL} \end{cases} + \begin{cases} a_{s}^{2} \mathcal{M}^{(2,0)} \\ \mathsf{NNLL} \end{cases}$$

G. Falcioni (UZH and UniTo)

H+jet in the Regge limit

CERN - 26th May 2025 6 / 43

Climbing logarithmic towers

- $\bullet~$ Diagrammatic analysis in $\textbf{QCD} \rightarrow \text{BFKL}$ amplitudes
 - Leading Logarithm (LL) [Lipatov 1976;Fadin,Kuraev,Lipatov 1975-1977;Balitsky,Lipatov 1978]
 - NLL [Fadin,Lipatov;Ciafaloni,Camici 1998;Fadin,Kozlov,Reznichenko 2015]
 - Towards NNLL [Fadin,Lipatov 2017;Fadin 2016-2025]
- Growing set of tools
 - Wilson lines [Korchemsky 1993;Balitsky 2000;Caron-Huot 2013]
 - Effective Field Theories [Lipatov 1991;Balitsky 2001;Rothstein,Stewart 2016-2025]
- Integrability [Lipatov 1993;Faddeev,Korchemsky 1995] in planar $\mathcal{N}=4$ sYM [Lipatov 2009]
 - BFLK eigenvalue through N³LL [Alfimov,Gromov,Sizov 2018;Velizhanin 2021]
 - ► All-loop, all multiplicity formula [Del Duca *et al.* 2020].

Energy logs at the LHC

arXiv:2405.20206

[Ana Rosario Cueto Gòmez, HP2 2024]

102

2 103 3 10

H_r, [GeV]

G. Falcioni (UZH and UniTo)

3 10

CERN - 26th May 2025 8 / 43

5

Higgs + jet(s)

• BFKL-like form of the **one loop** amplitudes (NLL) with $m_{
m top}
ightarrow \infty$

[Xiao,Yuan 2018;Hentschinski,Kutak,van Hameren 2020;

Celiberto, Fucilla, Ivanov, Mohammed, Papa 2022].

- Non-trivial pattern of cancellations [Fucilla,Nefedov,Papa 2024]
- Applications to Higgs + jet phenomenology [Celiberto,Ivanov,Mohammed,Papa 2020; Andersen,Hassan,Maier,Paltrinieri,Papaefstathiou,Smillie -HEJ- 2022]

Gluon Reggeization [Lipatov;Kuraev,Fadin,Lipatov 1976]

$$\mathcal{M}_{ij\to ij}^{(0)} = g^2 \left(C_i^{(0)}(t) \mathbf{T}_i^a \right) \frac{s^J}{-t} \left(C_j^{(0)}(t) \mathbf{T}_j^a \right) =$$

Tree-level amplitudes \rightarrow *t*-channel exchange of **maximal spin** *J*.

- \mathbf{T}_i^a group generator in rep. of particle *i*.
- $C_i^{(0)}$ tree-level impact factor of *i*.

$$\mathcal{M}_{ij \to ij}^{LL} = \mathcal{M}_{ij \to ij}^{(0)} \left(\frac{s}{-t}\right)^{\alpha_g(t)} = \underbrace{\mathbf{a}_{s} \alpha_g^{(1)} + \dots}_{\alpha_g = s_s \alpha_g^{(1)} + \dots}$$
$$= \mathcal{M}_{ij \to ij}^{(0)} \left[1 + s_s \alpha_g^{(1)} L + \frac{1}{2} \left(s_s \alpha_g^{(1)} L\right)^2 + \dots\right]$$

Regge poles

[Caron-Huot,Gardi,Vernazza 2017]

Mellin representation of the amplitude

$$\mathcal{M} = \int_{\gamma - i\infty}^{\gamma + i\infty} \frac{dJ}{\sin(\pi J)} \sin\left(\frac{\pi J}{2}\right) \, \mathcal{A}_J(t) \, e^{JL}$$

 $\mathcal{A}_J(t)
ightarrow$ J-th partial wave. Simplest model $\mathcal{A}_J(t) = rac{1}{J-1-lpha(t)}$

$$\mathcal{M}_{\mathsf{pole}}\simeq \gamma(t)\,\left(rac{\mathsf{s}}{-t}
ight)^{1+lpha(t)}$$

Pure QCD amplitudes described by a **Regge pole** exchange to LL.

Regge cuts

[Caron-Huot, Gardi, Vernazza 2017]

The partial wave can have **cuts** in **complex** J-plane e.g.

$$\mathcal{A}_J(t) = \left(rac{1}{J-1-lpha(t)}
ight)^{1+eta(t)}$$

The Regge cut gives a different expansion in high energy logarithms

$$\mathcal{M}_{\mathsf{cut}}\simeq ilde{\gamma}(t)\, L^{eta(t)}\, e^{lpha(t)\,L}$$

The perturbative expansion doesn't tell the difference.

Do Regge cuts arise in QCD amplitudes?

G. Falcioni (UZH and UniTo)

Parton scattering to NLL

The real part of the 2 \rightarrow 2 amplitudes follows the Regge pole ansatz [Fadin,Kozlov,Reznichenko 2015]

$$\mathsf{Re}\Big[\mathcal{M}_{ij\to ij}^{\mathsf{NLL}}\Big] = c_i(t) \, c_j(t) \, e^{C_A \, \alpha_g(t) L} \, \mathcal{M}_{ij\to ij}^{(0)}$$

Regge trajectory [Fadin,Fiore,Kotsky 1995; Blümlein,Ravindran,van Neerven 1998] and **impact factors** [Fadin,Fiore 1992] expanded to **NLO**

Regge cuts in $Im[\mathcal{M}]$ [Caron-Huot 2013;+Gardi,Reichel,Vernazza 2017-2020]

Regge pole universality

$$= 2 a_s c_q^{(1)} + a_s^2 L \left(\alpha_g^{(2)} + 2 \alpha_g^{(1)} c_q^{(1)} \right) + \dots$$

$$= 2 a_s c_g^{(1)} + a_s^2 L \left(\alpha_g^{(2)} + 2 \alpha_g^{(1)} c_g^{(1)} \right) + \dots$$

Regge pole universality

$$= 2 a_{s} c_{q}^{(1)} + a_{s}^{2} L \left(\alpha_{g}^{(2)} + 2 \alpha_{g}^{(1)} c_{q}^{(1)} \right) + \dots$$

$$= 2 a_{s} c_{g}^{(1)} + a_{s}^{2} L \left(\alpha_{g}^{(2)} + 2 \alpha_{g}^{(1)} c_{q}^{(1)} \right) + \dots$$

$$= a_{s} \left(c_{q}^{(1)} + c_{g}^{(1)} \right) + a_{s}^{2} L \left(\alpha_{g}^{(2)} + \alpha_{g}^{(1)} \left(c_{q}^{(1)} + c_{g}^{(1)} \right) \right) + \dots$$

$\mathsf{Higgs} + \mathsf{jet} \mathsf{ to NLL}$

Effective theory in the infinite top mass limit $\mathcal{L}_{eff.} \sim \lambda H F^{\mu\nu;a} F^a_{\mu\nu}$

Tree-level amplitudes $\propto \mathcal{M}_{ig \to iH}^{(0)} = g \lambda C_i^{(0)}(t) \left(\frac{s}{t}\right) C_H^{(0)}(t) (\mathbf{T}_i^x)_{a_3 a_2} \delta_{a_1}^x$

$$\mathcal{M}_{ig \to iH}^{LL+NLL} = rac{1}{2} \left[\left(rac{s}{ au}
ight)^{lpha_g(t)} + \left(rac{-s}{ au}
ight)^{lpha_g(t)}
ight] \mathcal{M}_{ig \to iH}^{(0)} c_i(t, au) c_H(t,m_H^2, au),$$

- Universal behaviour in $gg \rightarrow gH$ and $qg \rightarrow qH$.
- Verified at one loop [Celiberto, Fucilla, Ivanov, Mohammed, Papa 2022].

Breaking Regge pole factorisation in pure QCD

- Colour structures that are absent at tree level
- Universality breaking [Del Duca, Glover 2001]

$$\operatorname{Re}\mathcal{M}_{qg \to qg}^{\operatorname{NNLO}} \neq \underbrace{c_q^{(2)} + c_g^{(2)} + c_q^{(1)} c_g^{(1)} - \frac{\pi^2}{N_c^2} (\alpha_g^{(1)})^2}_{\text{from pole ansatz}} + \mathcal{O}(a_s^3)$$

There is a mismatch arising from Regge cuts starting at NNLL

$$\delta_{\rm fact} = {\sf Re} \mathcal{M}_{qg \to qg}^{\sf NNLO} - {\sf pole \ ansatz} = \frac{a_s^2 \pi^2}{\epsilon^2} \frac{3}{16} \left(\frac{N_c^2 + 1}{N_c^2} \right) (1 - \epsilon^2 \zeta_2).$$

• IR divergent
$$~\sim \epsilon^{-2}$$

• Subleading in N_c .

- What is the structure of the amplitudes for Higgs + jet at **NNLL** in the Regge limit?
 - Is it purely a Regge pole or do Regge cuts arise?

- How to proceed?
 - Find methods to compute the contribution of the Regge cuts.
 - Determine the missing parameter in the Regge pole ansatz, i.e. the two-loop Higgs impact factor.

Outline

1) The Regge limit

Theoretical tools

- Infrared structure
- Evolution in rapidity

3 The Higgs boson impact factor

Long distance origin

Regge cut in the QCD amplitudes start as a $\frac{1}{\epsilon^2}$ effect \rightarrow IR origin!

• In the EFT language, Regge cuts from the interplay of **collinear** and **Glauber** modes [Gao,Moult,Raman,Ridgway,Stewart 2024].

Use Infrared Factorisation [Del Duca, Duhr, Gardi, Magnea, White 2011]

$$\mathcal{M} = \underbrace{\mathbf{Z}\left(\log\frac{s}{-t}, \frac{\mu^2}{-t}, \frac{1}{\epsilon}\right)}_{\mathcal{H}\left(\frac{\mu^2}{s}, \frac{\mu^2}{-t}, \epsilon\right)}$$

Predicted by IR fact.

 \mathcal{H} is **finite** as $\epsilon \to 0$, **Z** is a universal operator

$$\mathbf{Z} = \mathcal{P} \exp\left[-\frac{1}{2}\int_{0}^{\mu^{2}}\frac{d\lambda^{2}}{\lambda^{2}}\underbrace{\mathbf{\Gamma}(\lambda^{2}, \mathbf{a}_{s}(\lambda^{2}))}_{\text{Soft anomalous dim.}}\right]$$

Operators in colour space

 $(\mathbf{T}_i)_{a_1a_2}^b$ is the **colour generator** in the representation *i*.

Colour channel operators

$$\mathbf{T}_{s}^{2} = (\mathbf{T}_{1} + \mathbf{T}_{2})^{2}, \ \mathbf{T}_{t}^{2} = (\mathbf{T}_{1} + \mathbf{T}_{4})^{2}, \ \mathbf{T}_{u}^{2} = (\mathbf{T}_{1} + \mathbf{T}_{3})^{2}.$$

Operators in colour space

 $(\mathbf{T}_i)_{a_1a_2}^b$ is the **colour generator** in the representation *i*.

Colour channel operators

$$\mathbf{T}_{s}^{2} = (\mathbf{T}_{1} + \mathbf{T}_{2})^{2}, \ \mathbf{T}_{t}^{2} = (\mathbf{T}_{1} + \mathbf{T}_{4})^{2}, \ \mathbf{T}_{u}^{2} = (\mathbf{T}_{1} + \mathbf{T}_{3})^{2}.$$
$$\mathbf{T}_{t}^{2} (t_{a_{4}a_{1}}^{b} t_{a_{3}a_{2}}^{b}) = \underbrace{\xrightarrow{\bullet}}_{e} + \underbrace{\xrightarrow{\bullet}}_{e} + \underbrace{\xrightarrow{\bullet}}_{e} - 2 \underbrace{\xrightarrow{\bullet}}_{e} + \underbrace{\xrightarrow{\bullet}}_{e} - 2 \underbrace{\xrightarrow{\bullet}}_{e} + \underbrace{\xrightarrow{\bullet}}_{e} + \underbrace{\xrightarrow{\bullet}}_{e} - 2 \underbrace{\xrightarrow{\bullet}}_{e} + \underbrace{\underbrace{\bullet}_{e} + \underbrace{\underbrace{\bullet}}_{e} + \underbrace{\underbrace{\bullet}_{e} + \underbrace{\bullet}_{e} + \underbrace{\underbrace{\bullet}}_{e} + \underbrace{\underbrace{\bullet}_{e} + \underbrace{\bullet}_{e} + \underbrace{\bullet}_{e} + \underbrace{\bullet}_{e} + \underbrace{\bullet}_{e} + \underbrace{\underbrace{\bullet}_{e} + \underbrace{\bullet}_{e} + \underbrace{\bullet}_{e} + \underbrace{\bullet}_{e} + \underbrace{\bullet}_{e} + \underbrace{\bullet}_{e}$$

Structure of 2 \rightarrow 2 scattering

$$\frac{\gamma_{\mathcal{K}}(a_s)}{2} \left[L \mathbf{T}_t^2 + i \pi \mathbf{T}_{s-u}^2 \right] + (\Gamma_i + \Gamma_j) \mathbf{1} \qquad + \quad \mathbf{X}_{s-u} = \mathbf{1} + \mathbf{Y}_{s-u} \mathbf{1}$$

Dipole formula [Becher, Neubert; Gardi, Magnea 2009]

• $LT_t^2 \rightarrow \text{Reggeization at LL [Del Duca, Duhr, Gardi, Magnea, White 2011]}$

$$\frac{\gamma_{\kappa}(a_{s})}{2}L\mathbf{T}_{t}^{2}\mathcal{M}_{ij\rightarrow ij}^{(0)} = \frac{\gamma_{\kappa}(a_{s})}{2}LC_{A}\mathcal{M}_{ij\rightarrow ij}^{(0)}$$

• $T_{s-u}^2 \equiv \frac{T_s^2 - T_u^2}{2}$ is not diagonal \rightarrow breaks factorisation [Del Duca, GF, Magnea, Vernazza 2013-2015]

• $\Gamma_i \rightarrow$ Collinear singularities for parton i = q, g.

 $\Gamma_{ii \rightarrow ii} =$

IR structure for Higgs + 3 partons

.

Tight constraints from colour conservation with 3 partons

$$\mathbf{T}_t^2 = C_A \, \mathbf{1}, \qquad \qquad \mathbf{T}_{s-u}^2 = \mathbf{0}.$$

- The source of Reggeization breaking, T_{s-u}^2 , **disappeared**.
- From operator to scalar anom. dim. [Del Duca, GF 2025]

$$\Gamma_{ig \to iH} = \frac{\gamma_{K}(a_{s})}{2} C_{A} \left[\log \frac{s_{12}}{\sqrt{-s_{13}}m_{H\perp}} - i\frac{\pi}{2} \right] + \left(\Gamma_{i} + \Gamma_{gH}\right) + \mathcal{O}(a_{s}^{3})$$

where $m_{H\perp}^2 = m_H^2 + |p_H^{\perp}|^2$, $\Gamma_{gH} \rightarrow$ collinear sing.

• $\mathcal{O}(a_s^3)$ do not depend on kinematics [Almelid,Duhr,Gardi 2015] $\mathcal{O}(a_s^4) \sim \log(s)$ at most [GF,Gardi,Maher,Milloy,Vernazza 2022]

 $\Gamma_{ig \rightarrow iH}$ conjecturally exact to **NNLL without** Regge cuts!

OPE for high-energy scattering

Scattering of Wilson lines

 $[{\it Mueller, Patel, Balitsky, Korchemskaya, Korchemsky, Kovchegov, Jalilian-} \\$

 $Marian, Kovner, McLerran, Weigert, Iancu, Leonidov, \dots]$

$$\blacksquare \Psi_{\text{proj}} \sim \mathsf{T}\left[U(z_1)U(z_2)\dots\right] \quad \checkmark \quad \text{Target shockwave}$$

$$U(z) = \mathcal{P} \exp\left[ig \int_{-\infty}^{+\infty} dt A_+(x^+ = t, x^- = 0, x^\perp = z)\right] \equiv \mathcal{P} \exp\left[ig W(z)\right]$$

- Rapidity divergence: infinite Wilson lines on the lightcone
- Regulator: tilt **off** the lightcone $x^+ = e^\eta/\gamma t$, $x^- = e^{-\eta}/\gamma t$

$$\eta = rac{1}{2}\lograc{dx^+}{dx^-} = rac{1}{2}\lograc{s}{-t} \longrightarrow U_\eta(z)$$

Evolution in rapidity

Evolution of the projectile in the background of the target [Balitsky,Jalilian-Marian,Iancu,McLerran,Weigert,Leonidov,Kovner: B-JIMWLK, 1995-2000; Caron-Huot 2013]

$$\frac{d}{d\eta}\mathsf{T}\left[U(z_1)\ldots U(z_n)\right] = -\sum_{i,j}\int d^2z \, H_{ij}[U_{\mathsf{adj}}(z)] \otimes \mathsf{T}\left[U(z_1)\ldots U(z_n)\right]$$

Two terms in the L.O. Hamiltonian

- Add one Wilson line in the adjoint rep. (gluon emission)
- Colour rotation of the dipole.

Partonic Amplitudes [Caron-Huot 2013;+Gardi,Vernazza 2017]

• $|\Psi_i\rangle$ dilute: $U(z) = exp[ig W^a(z) T^a] \sim 1$, $W^a(z)$ Reggeon

• Iteratively act with H and generate powers of $\eta = \frac{1}{2} \log \frac{s}{-t}$.

$$H = \begin{pmatrix} H_{1 \to 1} & 0 & H_{3 \to 1} & \cdots \\ 0 & H_{2 \to 2} & 0 & \cdots \\ H_{1 \to 3} & 0 & H_{3 \to 3} & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}, \qquad H_{k \to k} = \mathcal{O}(a_s)$$

• Reggeons as free fields $\langle W^a(z_1)|W^b(z_2)
angle\sim \delta(z_1-z_2)\delta^{ab}$

G. Falcioni (UZH and UniTo)

Single Reggeon vs multiple Reggeons

$$\mathcal{M}_{ij
ightarrow ij} = \mathcal{M}^{\mathsf{SR}}_{ij
ightarrow ij} + \mathcal{M}^{\mathsf{MR}}_{ij
ightarrow ij}$$

The contribution of a single Reggeon has a **pole** structure

Multi-Reggeon exchanges are related to **Regge cuts**. E.g. $\mathcal{O}(a_s^2 L^0)$

$$\mathcal{M}^{\mathsf{MR},(2)}_{ij o ij} = \langle W^{a_1} W^{a_2} W^{a_3}(z) | W^{b_1} W^{b_2} W^{b_3}(x)
angle =$$

Disentangle the pole from the cut

$$\mathcal{M}_{ij \to ij}^{\mathsf{MR},(2)} = \pi^2 \, \mathcal{S}(\epsilon) \Big[\frac{N_c^2}{6} + \underbrace{\left((\mathsf{T}_{s-u}^2)^2 - \frac{C_A^2}{4} \right)}_{N_c - \mathsf{sublead}} \Big] \mathcal{M}_{ij \to ij}^{(0)}$$

- Leading colour $ightarrow \propto \mathcal{M}^{(0)}$ and universal $ightarrow extbf{POLE}$
- Subleading colour \rightarrow factorisation breaking $T_{s-u}^2 \rightarrow CUT$ Define a scheme through NNLL [GF,Gardi,Maher,Milloy,Vernazza 2021]

$$\mathcal{M}_{ij \to ij} = \frac{c_i(t,\tau)}{2} \left[\left(\frac{s}{\tau}\right)^{\alpha_g(t)} + \left(\frac{-s}{\tau}\right)^{\alpha_g(t)} \right] c_j(t,\tau) \mathcal{M}_{ij \to ij}^{(0)} + \mathcal{M}_{ij \to ij}^{\mathsf{MR}} \bigg|_{N_c\text{-sublead.}}$$

- Self-consistent through 4 loops [GF,Gardi,Maher,Milloy,Vernazza 2021]
- Extended to 2 \rightarrow 3 amplitudes at 2 loops [Abreu,De Laurentis,GF,Gardi,Milloy,Vernazza; Buccioni,Caola,Devoto,Gambuti 2024]

Outline

1 The Regge limit

Theoretical tools

- Infrared structure
- Evolution in rapidity

The Higgs boson impact factor

$\mathsf{Higgs} + \mathsf{jet} \ \mathsf{at} \ \mathsf{NNLL}$

$$\mathcal{M}_{ig \to iH} = \frac{c_i(t,\tau)}{2} \left[\left(\frac{s}{\tau}\right)^{\alpha_g(t)} + \left(\frac{-s}{\tau}\right)^{\alpha_g(t)} \right] c_H(t,\tau) \mathcal{M}_{ig \to iH}^{(0)} + \mathcal{M}_{ig \to iH}^{\text{cut}}$$

- Already known $c_i^{(L)}$, i = q, g and $L \le 2$ and $\alpha_g^{(L)}$ for $L \le 3$ [GF,Gardi,Maher,Milloy,Vernazza 2021; Caola,Chakraborty,Gambuti,von Manteuffel,Tancredi 2021]
- $c_{H}^{(2)}$ unknown term in the **Regge pole** component
- $\mathcal{M}_{ig \to iH}^{\text{cut}}$ must be disentangled from the rest.

Regge cuts in Higgs + jet?

ı

IR poles consistent with **no cuts** through 4 loops [Del Duca,GF 2025] In the prescription of [GF,Gardi,Maher,Milloy,Vernazza 2021]

$$\mathcal{M}_{ig \to iH}^{\text{cut}} = \mathcal{M}_{ig \to iH}^{\text{MR}} \left| \begin{array}{c} \text{with} & \mathcal{M}_{ig \to iH}^{\text{MR}} = P(\mathbf{T}_{t}^{2}, \mathbf{T}_{s-u}^{2}) \mathcal{M}_{ig \to iH}^{(0)} \\ \end{array} \right|_{N_{c}\text{-sublead.}}$$

P polynomial has Casimir in **adjoint** rep. $\mathcal{M}_{ig \to iH}^{MR} = \sum_{L} \mathcal{M}_{ig \to iH}^{MR(L)}$

$$\mathcal{M}_{ig \to iH}^{\mathsf{MR}\,(L)} = a_s^L f_L(\epsilon) \, \mathcal{C}_A^L \, \mathcal{M}_{ig \to iH}^{(0)}, \quad L \leq 3 \text{ [Del Duca,GF 2025]}$$

since $\mathbf{T}_t^2 = C_A \mathbf{1}$, $\mathbf{T}_{s-u}^2 = 0$. Therefore

$$\mathcal{M}^{\mathsf{cut}}_{ig o iH} = \mathcal{O}(a_s^4)$$

Input from fixed order

$$\frac{\mathcal{M}_{ig \to iH}^{(2)}}{\mathcal{M}_{ig \to iH}^{(0)}} = \frac{c_{H}^{(2)}}{c_{H}^{(1)}} + c_{i}^{(2)} + c_{i}^{(1)}c_{H}^{(1)} - \frac{\pi^{2}}{8}\left(\alpha^{(1)}\right)^{2} + L\left(\alpha^{(2)} + \alpha^{(1)}(c_{i}^{(1)} + c_{H}^{(1)})\right) \\ + \frac{\left(\alpha^{(1)}\right)^{2}}{2}L^{2}, \text{ where } L = \log\frac{s}{\tau} - i\frac{\pi}{2}$$

- Two-loop amplitudes known in general kinematics through $\mathcal{O}(\epsilon^2)$ [Gehrmann, Jakubčík, Mella, Syrrakos, Tancredi 2023]
- Results can be written in terms of HPLs in $v = \frac{m_H^2}{s}$ and 2dHPLs with letters $\{0, 1, -v, 1-v\}$ and argument $u = u\left(\frac{-t}{m_H^2}, v\right)$.
- Asymptotic expansion as $v \rightarrow 0$ from the differential eqs. for 2dHPLs [Del Duca,Falcioni 2025]

The two-loop Higgs impact factor

Factorisation of the IR poles

$$c_{H}(t, m_{H}^{2}, \tau) = \frac{Z_{\operatorname{col} gH}\left(\frac{m_{H\perp}^{2}}{\mu^{2}}, a_{s}\right)}{\cos\left(\frac{\pi\alpha_{g}(t)}{2}\right)} \left(\frac{\tau}{m_{H\perp}^{2}}\right)^{\frac{\alpha_{g}(t)}{2}} \bar{D}_{H}(a_{s}, x, \mu^{2}),$$

where
$$x = \frac{-t}{m_H^2}$$
, $Z_{\operatorname{col} gH} = \exp[-\int \frac{d\lambda^2}{2} \Gamma_{gH}(\lambda^2)]$, \overline{D} finite as $\epsilon \to 0$.

The result is expanded as $ar{D} = \sum a_s^L \, ar{D}^{(L)}$ and organised in weight

$$ar{D}_{H}^{(2)}(x,\mu^2=-t)=ar{D}_{H,w=4}^{(2)}(x)+\underbrace{ar{D}_{H,eta_0}^{(2)}(x)}_{ ext{weight 3}}+\sum_{i\leq 2}ar{D}_{H,w=i}^{(2)}(x)$$

Result continued

l

Leading transcendental weight

$$\begin{split} \bar{D}_{H,w=4}^{(2)}(x) &= 8N_c^2 \left\{ \mathsf{Li}_4\left(\frac{x}{1+x}\right) - \frac{1}{2}\mathsf{Li}_4(-x) + \frac{1}{2}\mathsf{Li}_3(-x)\log(x) - \frac{1}{4}\mathsf{Li}_2(-x)\log^2(x) \right. \\ &+ \frac{\log^4(x)}{16} + \frac{\log^4(1+x)}{24} + \frac{1}{4}\log^2(x)\log^2(1+x) - \frac{1}{4}\log^3(x)\log(1+x) \\ &- \frac{1}{6}\log(x)\log^3(1+x) + \zeta_2\left(\frac{15}{8}\mathsf{Li}_2(-x) - \frac{31}{16}\log^2(x) + \frac{31}{8}\log(x)\log(1+x) \right. \\ &- \log^2(1+x)\right) + \frac{\zeta_3}{8}\log\left(\frac{x}{1+x}\right) + \frac{277}{128}\zeta_4 + i\pi\left[\frac{1}{2}\mathsf{Li}_3(-x) - \frac{1}{2}\mathsf{Li}_2(-x)\log(x) \right. \\ &+ \frac{1}{4}\log^3(x) - \frac{3}{4}\log^2(x)\log(1+x) + \frac{1}{2}\log(x)\log^2(1+x) - \frac{1}{6}\log^3(1+x) \\ &- \frac{7}{8}\zeta_2\log\left(\frac{x}{1+x}\right)\right] \bigg\}. \end{split}$$

Weight 4 terms written as classical polylogarithms [Duhr 2012].

Checks

- Universality: $\mathcal{M}_{gg \to gH}$ and $\mathcal{M}_{qg \to qH}$ give the same Higgs impact factor.
- Three-loop amplitude at NNLL

$$\frac{\mathcal{M}_{ig \to iH}^{(3)}}{\mathcal{M}_{ig \to iH}^{(0)}} = \frac{\left(\alpha^{(1)}L\right)^3}{6} + \alpha^{(1)}L^2 \left[\frac{\alpha^{(1)}}{2}\left(c_i^{(1)} + c_H^{(1)}\right) + \alpha^{(2)}\right] + L\left[\alpha^{(3)}\right] + \alpha^{(2)}\left(c_i^{(1)} + c_H^{(1)}\right) + \alpha^{(1)}\left(\frac{c_H^{(2)}}{2} + c_i^{(2)} + c_i^{(1)}c_H^{(1)} - \frac{\pi^2}{8}\left(\alpha^{(1)}\right)^2\right)\right]$$

All the ϵ -poles match the IR factorisation formula

$$\mathcal{M}_{ig \to iH}^{(3)} = Z^{(3)} \, \mathcal{M}_{ig \to iH}^{(0)} + Z^{(2)} \, \mathcal{H}_{ig \to iH}^{(1)} + Z^{(1)} \, \mathcal{H}_{ig \to iH}^{(2)} + \mathcal{O}(\epsilon^{0})$$

G. Falcioni (UZH and UniTo)

Outline

1) The Regge limit

- Infrared structure
- Evolution in rapidity
- 3 The Higgs boson impact factor

Conclusion

- Simple structure of Higgs + jet at **NNLL** in the Regge limit
 - ▶ No Regge cuts up to (and including) three loops.
 - The amplitudes are given in terms of the 3-loop gluon Regge trajectory, 2-loop partonic and Higgs impact factor, c_H⁽²⁾.
- The impact factor c_H⁽²⁾ from the high-energy limit of the two-loop amplitudes in [Gehrmann, Jakubčík, Mella, Syrrakos, Tancredi 2023]
- Verified universality of Regge pole factorisation in

$$gg \to gH, \qquad qg \to qH$$

• Pole structure at 3 loops agrees with IR factorisation.

٠

Outlook

- Three-loop amplitudes complete [Chen,Guan,Mistlberger 2025] \rightarrow a look beyond NNLL.
- Reggeization in **full QCD** \rightarrow include top mass One-loop corrections for $g \rightarrow gH$ impact factor recently computed [Celiberto,Delle Rose,Fucilla,Gatto,Papa 2024]
- Extend to the multi-Regge limits with more than 1 jet See [Abreu,De Laurentis,GF,Gardi,Milloy,Vernazza; Buccioni,Caola,Devoto,Gambuti 2024]
- Correspondence between amplitudes for H + 3 g and stress-tensor form factor known through 8 loops in $\mathcal{N} = 4$ sYM [Dixon,McLeod,Wilhelm 2020;Dixon,Gurdogan,McLeod,Wilhelm 2022].

Thank you!

Expansion of the two-loop amplitudes (I)

Introduce the 2dHPL [Gehrmann,Remiddi 2000-2001] as

$$G(a_1,\ldots,a_n;u) = \int_0^u \frac{dt}{t-a_1} G(a_2,\ldots,a_n;t), \qquad a_i \in \{0,1,-v,1-v\}$$

Pick independent basis under shuffle relations, $\vec{f}(x, v) = \{\varepsilon^6 G(0, 0, 0, 0, 0, 1 - v, u), \dots, \varepsilon G(0, u), 1\}$, and write

$$\frac{\partial}{\partial v} \vec{f}(v, x) = \varepsilon \,\mathbf{M}_{\mathbf{v}}(v, x) \,\vec{f}(v, x),$$
$$\frac{\partial}{\partial x} \vec{f}(v, x) = \varepsilon \,\mathbf{M}_{\mathbf{x}}(v, x) \,\vec{f}(v, x),$$

with $v = \frac{m_H^2}{s}$ and $x = \frac{-t}{m_H^2}$. Singular behaviour as $v \to 0$ $\mathbf{M}_v = \frac{1}{v} \mathbf{M}_v^{(0)} + \sum_{k \ge 0} v^k \mathbf{M}_v^{(1+k)}(x),.$

Expansion of the two-loop amplitudes (II)

Solution in generalised series [Caron-Huot, Chicherin, Henn, Zhang, Zoia 2020]

$$\vec{f}(v,x) = T(\varepsilon, v, x) \exp\left[\varepsilon \log(v) \mathbf{M}_{\mathbf{v}}^{(0)}\right] \mathbb{P} \exp\left[\varepsilon \int_{1}^{x} \mathbf{M}_{\mathbf{x}}(v=0,t), dt\right] \vec{g}_{0},$$

where $T(\varepsilon, \mathbf{v}, \mathbf{x}) = \mathbb{I} + \sum_{k,j \ge 1} \mathbf{v}^k \varepsilon^j T^{(k,j)}(\mathbf{x})$

$$T^{(k,1)}(x) = \frac{\mathsf{M}_{\mathsf{v}}^{(k)}(x)}{k},$$

$$T^{(k,j)}(x) = \frac{1}{k} \left\{ \left[\mathsf{M}_{\mathsf{v}}^{(0)}, T^{(k,j-1)}(x) \right] + \sum_{q=1}^{k-1} \mathsf{M}_{\mathsf{v}}^{(k-q)}(x) T^{(q,j-1)}(x) \right\}.$$

and the boundary conditions [Hidding 2020] is

$$\lim_{v \to 0} \vec{f}(v, 1) = \exp \left[\varepsilon \, \log(v) \, \mathbf{M}_{\mathbf{v}}^{(\mathbf{0})} \right] \, \vec{g}_{\mathbf{0}}(\varepsilon),$$

G. Falcioni (UZH and UniTo)

The soft anomalous dimension

3-loop Γ [Almelid,Duhr,Gardi 2015] + 4-loop ansatz [Becher,Neubert 2019] $\Gamma_n(\{s_{ij}\}, \lambda, a_s) = \Gamma_n^{\text{dip.}}(\{s_{ij}\}, \lambda, a_s) + \Gamma_{n,4\text{T-3L}}(a_s) + \Gamma_{n,Q4\text{T-2},3\text{L}}(a_s)$ $+ \Delta_4(\{s_{ij}\}, \lambda, a_s)$

 $\mathbf{\Delta}_4 = \mathcal{O}(a_s^3)$ vanishes with 3 partons

$$\begin{split} \Gamma_{n}^{\text{dip.}} &= -\frac{\gamma_{K}(a_{s})}{4} \sum_{i \neq j} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \log \frac{-s_{ij}}{\lambda^{2}} + \sum_{i} \gamma_{i}(a_{s}), \\ \Gamma_{n,4\text{T}-3\text{L}}(a_{s}) &= \underbrace{f(a_{s})}_{\mathcal{O}(a_{s}^{3})} \sum_{(i,j,k)} f^{ade} f^{bce} \{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{b}, \mathbf{T}_{j}^{c}, \mathbf{T}_{k}^{d}\}_{+}, \\ \mathbf{T}_{n,\text{Q4T-2,3\text{L}}} &= -\frac{1}{2} \sum_{R} \underbrace{g_{R}(a_{s})}_{\mathcal{O}(a_{s}^{4})} \left[\sum_{(i,j)} \left(\mathcal{D}_{iijj}^{R} + 2\mathcal{D}_{iiij}^{R} \right) \log \frac{-s_{ij}}{\lambda^{2}} + \sum_{(i,j,k)} \mathcal{D}_{ijkk}^{R} \log \frac{-s_{ij}}{\lambda^{2}} \right] \\ \text{with } \mathcal{D}_{ijkl}^{R} &= \frac{1}{4!} \sum_{\sigma \in S_{4}} \text{Tr} [T_{R}^{\sigma(a)} T_{R}^{\sigma(b)} T_{R}^{\sigma(c)} T_{R}^{\sigma(d)}] \mathbf{T}_{i}^{a} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c} \mathbf{T}_{l}^{d}. \\ \text{S. Falcioni} (UZH and UniTo) & \text{H+jet in the Regge limit} & \text{CERN - 26^{th} May 2025} & 41/43 \end{split}$$

Multi-Reggeon exchanges at higher order (I)

[Caron-Huot,Gardi,Vernazza 2017;GF,Gardi,Milloy,Vernazza 2020;+Maher 2021]

$$= a_s^3 L(i\pi)^2 \left[N_c^3 S_C(\epsilon) + \mathbf{T}_{s-u}^2 [\mathbf{T}_{s-u}^2, \mathbf{T}_t^2] S_A(\epsilon) + [\mathbf{T}_{s-u}^2, \mathbf{T}_t^2] \mathbf{T}_{s-u}^2 S_B(\epsilon) \right] \mathcal{M}_{ij \to ij}^{(0)}$$

• The operator $[\mathbf{T}_{s-u}^2, \mathbf{T}_t^2]$ is subleading at large N_c

- The leading term at large N_c is **universal**
 - Absorbed in the definition of the 3-loop Regge trajectory [GF,Gardi,Maher,Milloy,Vernazza; Caola,Chakraborty,Gambuti,von Manteuffel,Tancredi 2021]

Multi-Reggeon exchanges at higher order (II)

[GF,Gardi,Milloy,Vernazza 2020;+Maher 2021]

$$= a_s^4 L^2 (i\pi)^2 \left[\frac{\mathbf{K}^{(4)}}{\epsilon^4} + \frac{\mathbf{K}^{(1)}}{\epsilon} \right] \mathcal{M}_{ij \to ij}^{(0)}$$

• $\mathbf{K}^{(4)}$ and $\mathbf{K}^{(1)}$ involve either the operator $[\mathbf{T}^2_{s-u},\mathbf{T}^2_t]$ or

$$\frac{d_{AA}}{N_A}-\frac{C_A^4}{24}=\mathcal{O}(N_c^2),$$

since $\frac{d_{AA}}{N_A} = \frac{N_c^4 + 36N_c^2}{24}$.

- Multi-Regge exchanges at 4 loops are subleading in N_c .
- The Regge pole can NOT absorb a would-be leading term in N_c !

G. Falcioni (UZH and UniTo)

H+jet in the Regge limit