Tracking Performance in CLIC_ILD and CLIC_SiD

LCWS11 – Tracking Performance at CLIC_ILD/SiD

Momentum Resolution Requirements I

Same as at ILC

- momentum resolution dictated by Higgs mass determination from Higgsstrahlung process e⁺e[−] → Zh
- mass reconstruction from system recoiling against $Z \rightarrow \mu^+\mu^-$

CLIC challenges

- higher E_{CM} = higher track momenta
 - more stringent requirements as at ILC

Required momentum resolution

 $\sigma_{pT}/p_T^2 \approx 2 \cdot 10^{-5} \, \text{GeV}^{-1}$

- recoil mass spectrum significantly broader if momentum resolution
 2 · 10⁻⁵ GeV⁻¹
 - $\circ~$ beamstrahlung spread dominates at ~2 $\cdot~10^{-5}\,GeV^{-1}$

Michael Hauschild - CERN, 27-Sep-2011, page 2

LCWS11 – Tracking Performance at CLIC_ILD/SiD

Momentum Resolution Requirements II

- Determination of smuon and neutralino masses
 - from muon momentum distribution in $e^+e^- \rightarrow \tilde{\mu}\tilde{\mu} \rightarrow \mu^+\mu^-X_1^0X_1^0$
 - significant deterioration of high end mass spectrum if resolution > 4 · 10⁻⁵ GeV⁻¹

LCWS11 – Tracking Performance at CLIC_ILD/SiD

Time Stamping Requirements

CLIC bunch crossing rate is 0.5 ns

- need "time-stamping": identification of tracks from individual BX
 - overlay of physics events with background from $\gamma\gamma \rightarrow$ hadrons (3.2 events per BX)
 - time stamping of each individual BX would be extremely challenging (rather impossible)
- physics performance not significantly degraded if time stamping accuracy is ~ 5 – 10 BX

CLIC Detector Study + CDR

- Early CLIC Detector Study finished in 2004
 - very basic detector studies only (Toy MC)
 - not much progress until ~2008
- Study relaunched in 2009 for a CLIC-CDR in December 2011
 - starting point: use existing ILD and SiD detector concepts + software
 - modify where needed and create "CLIC flavours" of both ILC detectors
 - "ILD-like detector" @ CLIC @ 3 TeV = CLIC_ILD
 - "SiD-like detector" @ CLIC @ 3 TeV = CLIC_SiD

CLIC detector ≈ "90% ILC detector" + "10% CLIC specifics"

- CLIC is profiting a lot from ongoing ILC detector R&D and design studies
- but ILC also profits from CLIC studies
 - CLIC detector = "extreme" ILC detector → win win situation for both communities
 - e.g. common work on Particle Flow Algorithms
 - W-HCAL, TPC simulation, engineering studies (push pull)

LCWS11 – Tracking Performance at CLIC_ILD/SiD

CLIC_ILD and CLIC_SiD tracking systems

- Main tracking detectors identical to ILD (TPC) / SiD (5-layer Si)
- Main modification w.r.t. ILC in vertex detectors
 - vertex detector + beam pipe at larger radius to account for increased backgrounds
 - barrel vertex detector moved out by factor ~2 in inner radius
 - CLIC_ILD: 31 mm
 - CLIC_SiD: 27 mm

LCWS11 – Tracking Performance at CLIC_ILD/SiD

Tracking Algorithms

CLIC_ILD: 3 step tracking algorithm

- pattern recognition + track fitting separately in TPC and Si detectors
 - tracks curling in TPC for p_T < 1.2 GeV
 = many not connected low p_T helix segments in standalone TPC tracking

execute FullLDC tracking

- combines track segments from both TPC + Si and refit combined track
- helix segments combined to a single track

CLIC_SiD

- SeedTracker algorithm in org.lcsim
 - finding track seeds = looking for combinations of at least three hits that fulfill a helix fit
 - track seeds extended by successively adding more hits
- vertex constraint to reduce number of possible combinations
 - ±5 mm in rφ, ±10 mm in z (loose enough to find tracks from displaced vertices)

Tracking Efficiency (single muons)

CLIC_SiD

- single muon tracking efficiency close to 100% for p_T > 0.3 GeV
 - slight drop for small polar angles
 - step drop for $\Theta < 7^{\circ}$ (less than 7 Si hits)
 - drop by 2% at transition region barrel endcap around 30°

Very similar picture for CLIC_ILD

o flat distribution, no drop in transition region

LCWS11 – Tracking Performance at CLIC_ILD/SiD

Tracking Efficiency (tt events)

CLIC_ILD tracking efficiency still ~99% for p_T > 2 GeV

- \circ > 97% for p_T > 0.4 GeV
- some drop for high momenta around 100 GeV (further studies needed)
- No effect for $p_T > 1$ GeV when adding background
 - background from $\gamma\gamma \rightarrow$ hadrons, 3.2 events per BX, 60 BX overlayed

LCWS11 – Tracking Performance at CLIC_ILD/SiD

Tracking Efficiency (di-jets from Z' decays)

Di-jets from Z' (m_{z'} = 3 TeV) → qq (q = u,d,s) even more challenging than tt events

- \circ 2 very narrow jets with high p_T tracks, challenging for pattern recognition
- drop of efficiency (CLIC_SiD) at high p_T due to high occupancy
 - interesting effect: background ($\gamma\gamma \rightarrow$ hadrons) helps for low p_T tracks
 - adding random background hits increases overall number of hits per track (tracks w/o background hits might fail minimum number of hits cut)

Michael Hauschild - CERN, 27-Sep-2011, page 10

LCWS11 – Tracking Performance at CLIC_ILD/SiD

Fake Rate (di-jets from Z' decays)

CLIC_SiD track quality cut

- track must have > 75% of correctly assigned hits (otherwise "fake")
 - $\circ~$ only 1 wrongly assigned hit for tracks with 6 or 7 hits

Only few percent of tracks have > 1 wrongly assigned hit

- higher fake rate (~10%) for high p_T tracks (more likely in center of jet)
- fake rate lower in forward region (more pixelated detectors)

Fraction of Badly Rec. Tracks (tt events)

- CLIC_ILD track quality cut
 - track must have > 96% of correctly assigned hits
 - no effects on resolution etc. if no more than 4% wrongly assigned hits
 - 1 3% fraction of badly reconstructed tracks for p_T < 25 GeV
 - raising to 10% for higher p_T
 - no effect of background ($\gamma\gamma \rightarrow$ hadrons) for $p_T > 1$ GeV

Momentum Resolution (Single Muons)

Momentum resolution parameterized

$$\sigma\left(\Delta p_{\mathrm{T}}/p_{\mathrm{T}}^{2}
ight)=a\,\oplus\,rac{b}{p_{\mathrm{T}}}=a\,\oplus\,rac{b}{p\sin heta}$$

$$\Delta p_{\rm T} = p_{\rm T,MC} - p_{\rm T,rec.}$$

- a = contribution from curvature measurement
- **b** = multiple scattering contribution

LCWS11 – Tracking Performance at CLIC_ILD/SiD

CLIC_SiD (single muons)

$$\begin{array}{c|cccc} \theta \ [^{\circ}] & a \ [\text{GeV}^{-1}] & b \\ \hline 90 & 7.3 \cdot 10^{-6} & 2.0 \cdot 10^{-3} \\ 30 & 1.9 \cdot 10^{-5} & 9.5 \cdot 10^{-4} \\ 10 & 4.0 \cdot 10^{-4} & 1.5 \cdot 10^{-4} \end{array}$$

requirement of $\sigma_{pT}/p_T^2 < 2 \cdot 10^{-5} \, GeV^{-1}$ fulfilled

Momentum Resolution (Single µ + tt events)

Time Stamping in CLIC_ILD

TPC does not provide direct time stamping information

- z coordinate reconstruction requires BX time information
 - $\circ \mathbf{z}_{\text{TPC}} = (\mathbf{t}_{\text{drift}} + \Delta \mathbf{t}_{\text{BX}} \cdot \mathbf{BX}) \mathbf{v}_{\text{drift}}$
- P TPC information can be combined with information from the outer silicon envelope SET

LCWS11 – Tracking Performance at CLIC_ILD/SiD

Conclusions

Requirements from physics performance

- \circ momentum resolution: $\sigma_{pT}/p_T^2 \approx 2 \cdot 10^{-5} \, GeV^{-1}$
- time stamping accuracy: 5 10 BX (2.5 5 ns)

CLIC tracking systems adapted from ILD and SiD

- main tracker unchanged
- o inner radius of vertex detector further moved out (~2 x larger inner radius w.r.t. ILC)

Tracking efficiency

- 97 99% for tracks in tt events (CLIC_ILD) or di-jets (CLIC_SiD) from 2 – 20 GeV
 - slight drop at higher momenta (needs further study)
 - no degradation by background for $p_T > 2 \text{ GeV}$
- fake rate at percent level

Momentum resolution ≤ 2 · 10⁻⁵ GeV⁻¹ fulfilled for both CLIC_ILD and CLIC_SiD

time Stamping capabilities for CLIC_ILD demonstrated

LCWS11 – Tracking Performance at CLIC_ILD/SiD