SPL Intercavity support

Conceptual design review

A. Vande Craen TE/MSC-CMI 04/11/2011

- Introduction
- Requirements
- Concept scheme
- Conceptual design
- Proposed design
- Conclusion

Introduction

- Helium tank/double walled tube not stiff enough for cantilever
 - → Support on tuner side
- Easiest way: connect on next cavity
- Require special design:
 - Cryogenic temperature
 - Vacuum
 - Thermal contraction

- Introduction
- Requirements
- Concept scheme
- Conceptual design
- Proposed design
- Conclusion

Requirements

- Mechanical aspect
 - Sustain any load case (static, transport, thermal transient...)
 - Allow alignment
 - Keep alignment in steady state (warm → cold)
 - Minimum stress in helium tank
- Cryogenic temperature
 - Designed to work at 2K (transient)
 - Allow contraction of helium tank
- Installation and access
 - Installation out of clean room
 - Accessibility to tune alignment
 - No accessibility required after alignment

- Introduction
- Requirements
- Concept scheme
- Conceptual design
- Proposed design
- Conclusion

- Can be used in both plane (vertical and horizontal)
- Extremity of cavities
 - 2 supports needed

- Support in vertical plane
 - Free longitudinal contraction
 - No displacement in vertical direction
 - Free rotation

- Support in horizontal plane
 - Free transversal contraction (transient)
 - Blocked transversal displacement of cavity
 - Free rotation

04/11/2011

Concept scheme

• Space available

- Introduction
- Requirements
- Concept scheme
- Conceptual design
- Proposed design
- Conclusion

04/11/2011

- Contacts
 - Sphere-cylinder
 - 1 free sliding, 2 blocked
 - Free rotation
 - Sphere-plane
 - 2 free sliding, 1 blocked
 - Free rotation

- Redundancy
- Limit maximum displacement

04/11/2011

- Thermal contraction
 - Longitudinal
 - 4.5 mm

- Transversal
 - 1.15 mm
 - Max displacement of beam axis = 0.6 mm (transient)
 - → deformation of helium tank
- Vertical
 - · 1.2 mm
 - Blocked
 - → deformation of helium tank

- Deformation
 - Alignment process not yet defined
 - Possible procedure
 - Alignment on a structure (supports not loaded)
 - Load transfer to vacuum vessel (supports loaded)
 - Alignment directly depends on supports
 - → Limit deformations when loaded

- Deformation
 - Steady state
 - Displacement allowed: 0.02 mm 10% of alignment tolerance
 - Load: 500 N

 1/4 of total weight (200 kg)
 - Length: 250 mm
 - Transport
 - Displacement allowed: 0.1 mm
 - Load: 1540 N (0.5 g)

04/11/2011

Conceptual design

• Cylinder
Minimum diameter = 67 mm

Rectangle

Width [mm]	Height [mm]
10	106
15	92
20	84
25	78

Triangle

Width [mm]	Height [mm]
10	152
15	132
20	121
25	112

- Introduction
- Requirements
- Concept scheme
- Conceptual design
- Proposed design
- Conclusion

Proposed design

- Contacts
 - Sphere-cylinder and sphere plane
 - Non standard components
 - High stresses at contact point
 - Sphere-cylinder: 430 Mpa
 - Sphere-plane: 1300 MPa
 - → Plastic deformation
 - Solutions
 - Decrease stresses
 - Increase elastic limit

Proposed design

- Proposed solution
 - Spherical plain bearing
 - Rotation freedom (= sphere-sphere contact)
 - Standard components
 - Support very high load
 - Bad thermal contact
 - Sliding cylinder in spherical plain bearing
 - Cylinder-cylinder contact → low stresses
 - Easy to machine with standard tooling
 - · Bad thermal contact

Has to be tested at low temperature under vacuum

04/11/2011

Proposed design

- Proposed solution
 - Sphere-cylinder
 - Cylinder sliding in a spherical plain bearing
 - Spherical plain bearing sliding in a cylinder

04/11/2011

Proposed design

- Proposed solution
 - Sphere-plane
 - Spherical plain bearing sliding (on longitudinal and lateral axis) on a support
 - Cylinder sliding in a spherical plain bearing;
 spherical plain bearing sliding laterally on a support

04/11/2011

Proposed design

Proposed solution

- Introduction
- Requirements
- Concept scheme
- Conceptual design
- Proposed design
- Conclusion

Conclusion

- Concept scheme and design
 - Acceptable stresses
 - Limited displacement
- Next step
 - Test spherical plain bearing solution
 - Displacement
 - Friction
 - Define interface to helium tank
 - Design final solution

Thank you for your attention

- Reaction forces
 - Weight of the cavity
 - 200 kg
 - Acceleration during transport (0.5 g)
 - Max lateral force = 525 N
 - Max vertical force = 1540 N
 - Helium tank deformation (transient)
 - Vertical
 - Horizontal
- Redundancy
 - Helium tank never in cantilever
 - □ Each support → All forces