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• Introduction• Introduction
• Experimental issues at CLIC for precision physics: 

backgrounds, luminosity spectrabackgrounds, luminosity spectra
• Physics examples: The Higgs particle

BSM searches & measurements

• Also some comments concerning CLIC @ 500-1000 GeV

• Details in the report hep-ph/0412251
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Cross Sections at CLIC
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Experimental Issues: Backgrounds 
CLIC  3 TeV e+e- collider with a luminosity ~ 1035cm-2s-1 (1 ab-1/year)  

To reach this high luminosity: CLICg y
has to operate in a regime of high 

beamstrahlung 

Expect large backgrounds
# f ph t ns/b m p ti l# of photons/beam particle
• e+e- pair production
• γ γ events

b k d• Muon backgrounds
• Neutrons
• Synchrotron radiation
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y
Expect distorted lumi spectrumReport →

Old Values



Experimental issues: Luminosity Spectrum

Luminosity spectrum not as
sh l k d s t LEP
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sharply peaked as e.g. at LEP
or TESLA/NLC



New Parameters..

See D. Schulte

• Same bunch distance (0 6 nsec)• Same bunch distance (0.6 nsec)
• 2 x more bunches per train
• Backgrounds similar or somewhat better 
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Do not except significant differences with studies in the report



e+e- Pair Production
Coherent pair production
• number/BX   4.6 109

• energy/BX 3 9 108 TeV

Disappear in the beampipe 
Can backscatter on machine elements• energy/BX    3.9 108 TeV

Can be suppressed by strong magneticIncoherent pair production:  
b /BX 4 6 105

Need to protect detector with mask

pp y g g
field in of the detector• number/BX   4.6 105

• energy/BX    3.9 104 TeV

hits/mm2/bunch train

4T field

hits/mm /bunch train
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30mm ⇒O(1) hit/mm2/bunch train 



γγ Background

Neutral and charged energy 

γγ → hadrons:   4 interactions/bx with WHAD>5 GeV

g gy
as function of cosθ per bx

ParticlesParticles 
accepted
within 
θ > 120mrad
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For studies: take 20 bx and overlay events



Muon Background

Muon pairs produced in 
electromagnetic interactions~20 muons m g
upstream of the IP e.g beam halo 
scraping on the collimators

20 muons
per bx

GEANT3 simulation, taking into
account the full CLIC beam 
delivery system

# of muons expected in the# of muons expected in the 
detector ~ few thousand/bunch
train (150 bunches/100ns)1 shower 

>100 GeV/5 bx

⇒ OK for (silicon like) tracker
⇒ Calorimeter?

>100 GeV/5 bx
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⇒ Calorimeter?



Studies include background, spectra,…
Physics generators (COMPHEP
PYTHIA6,… )
+ CLIC lumi spectrum (CALYPSO)+ CLIC lumi spectrum (CALYPSO)

+ γ γ→ hadrons background
e.g. overlay 20 bunch crossings
(+ e+e- pair background files…)

Detector simulation
• SIMDET (fast simulation)( )
• GEANT3 based program
⇒Studies of the benchmark 
processes include backgrounds
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processes include backgrounds,
effects of lumi spectrum etc.



A Detector for a LC

TESLA TDR Detector

CLIC: Mask covers region upg p
to 120 mrad
Energy flow measurement 
possible down to 40 mrad

~TESLA/NLC detector qualities: good tracking resolution, jet flavour tagging,

possible down to 40 mrad
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TESLA/NLC detector qualities  good tracking resolution, jet flavour tagging,
energy flow, hermeticity,…



Detector Specifications

Starting point: the TESLA
TDR detector adapted to 
CLIC environment

- Detailed studies performed for 
previous CLIC parameters

Upd t ith n CLIC p m t s- Update with new CLIC parameters
needs to be done
- Greater need for time-stamping
fof events

- No significant physics difference
found previously between NLC and p y
TESLA at sub-TeV energies
- None expected between old and
new multi-TeV parameters
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new multi TeV parameters



Example B-tagging

B-Decay length is long!

• Define Area of Interest  by 
± 0.04 rad cone around the jet axisj

• Count hit multiplicity (or pulse 
height) in Vertex Track layers

• Tag heavy hadron decay by step• Tag heavy hadron decay by step 
in detected multiplicity

• Can reach 50% eff./~80% purity

13



Tracking Technologies
3D Silicon

•Time stamping will be important O(ns)
Amorphous Silicon

•Time stamping will be important O(ns)
• Macro-pixels? 
• Radiation however not a big issue

5 1010 t / 2/~ 5 1010 neutrons/cm-2/year
⇒R&D will be required!!
⇒Discussion in the Physics working group
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has started with in-house experts



Ultra-Fast tracking Layer for time stamping

• Technologies?
– Sensors

Planar silicon pixel detector P326 Gigatracker:

P. Jarron/CLIC-PH meeting
Fall ‘06     

• Planar silicon pixel detector P326 Gigatracker:
• More exotic: 

– 3-D silicon detector faster than planar silicon, but no power reduction
– SPAD very high gain lower power consumption– SPAD, very high gain, lower power consumption
– MCP, very high gain , lower power consumption

– Questions
• probability to have 2 3 successive BX’s with interaction determines theprobability to have 2, 3.. successive BX s with interaction determines the 

sensor speed
• Segmentation of the fast time stamp layer?
• Longitudinal spread of BX’s influence complexity of track reconstructiong p p y

• Time stamps are local
– Signal processing and event reconstruction

• Each pad provide time stamps for each BX’s of beam train (150/s), 
• Vertex operates as an imager 150 frame (train)/s
• Each vertex hit in front of the time stamp layer will be associated to  a 

bunch number
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To be continued in CLIC-PH discussions…  But detector R&D needed 



Consequences for the Detector
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Calorimetry

Importance of good energy resolution (e.g via energy flow)
Interesting developments in TeV-class LC working groups
e.g. compact 3D EM calorimeters, or “digital” hadronic calorimeters 
⇒Detailed simulation studies of key processes required
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y p q
⇒R&D accordingly afterwards/Join ILC detector efforts?



General Physics Context
• New physics expected in TeV energy range

– Higgs, supersymmetry, extra dimensions, …?
• LHC will indicate what physics, and at which 

energy scale
• Two possible scenarios:

– New physics at a low energy scalep y gy
• But perhaps more at higher energies (e.g., 

supersymmetry)
– New physics threshold at higher energy 

scale
• In many scenarios, e.g., SUSY, LHC will soon 

tell us the threshold
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Example: Resonance Production
R Z’Resonance scans, e.g. a Z’

D

1 ab-1 ⇒δM/M ~ 10-4 & δΓ/Γ = 3.10-3

Degenerate resonances
e.g. D-BESS model

Can measure ΔM down to 13 GeV

Smeared lumi spectrum allows
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Smeared lumi spectrum allows
still for precision measurements



Physics Case: the light Higgs

Low mass Higgs:
400 000 Higgses/

• Large cross sections
Large CLIC luminosity

⇒ O(500 K) Higgses/year
Allows to study the decay• Large CLIC luminosity

→Large events statistics
• Keep large statistics also    
f hi h Hi

Allows to study the decay
modes with BRs ~ 10-4 such
as H→μμ and H→bb (>180 GeV)
E d t i t 4%
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for highest Higgs masses Eg: determine gHμμ to ~4%



Physics case: the Higgs Potential

Reconstruct shape of the Higgs potential to complete the study of the Higgs 
profile and to obtain a direct proof of the EW symmetry breaking mechanism

Can measure the Higgs potential for Higgs even for masses up to 300 GeV
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Can measure the Higgs potential for Higgs even for masses up to 300 GeV
with precision up to 5-10% (using polarization/weighting)



Physics case: Heavy Higgs (MSSM)
LHC: Plot for 5 σ discovery

3 TeV CLIC
H A⇒ H, A   

detectable 
up to ~ 1.2 TeV
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Physics case: SUSY measurements

Benchmark Scenarios: CMSSM
Allowed by present data constraints
ADR F Gi n tti JE F M t t K Oli L P p

⇒ LC/LHC complementarity
Precision measurements at ILC/CLIC
Eg. 1150 GeV smuon mass to O(1%)
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ADR,F., Gianotti,JE,F. Moortgat, K. Olive, L. Pape
hep-ph/0508198

Eg. 1150 GeV smuon mass to O(1%)
Will a 0.5-1 TeV collider be enough?



Susy Mass Measurements

Momentum resolution (G3)

Mass measurements
to O(1%)to O(1%)

Momentum resolution
δp /p 2 10-4 GeV-1δpt/pt

2 ~ 10-4 GeV-1

adequate for this
measurement
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Sparticle Detection

Full

J. Ellis et al.

u
Model

samples

←
 Sec

Detectable
@ LHC

cond lig@ LHC

Provide

ghtest vi

ILC
Dark Matter

Dark Matter

isible spDark Matter
Detectable
Directly

particle

25Lightest visible sparticle →

e

JE + Olive + Santoso + Spanos



Sensitivity to χ2→ χ1+2 leptons 

Case study: χ2

Sensitivity (5σ) for LHC and LC Mass measurement precision
mχ2= 540 GeV, mχ1=290 GeV

1 5% p isi n~1.5% precision
on χ2 mass
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Physics Case: Extra Dimensions

Universal extra dimensions: RS KK resonances
⇒ Measure all (pair produced) new
particles and see the higher level 
excitations

RS KK resonances…
Scan the different states
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excitations



Precision Measurements

E.g.: Contact interactions:
Sensitivity to scales up to 
100-400 TeV
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100-400 TeV



Summary: scenarios with early LHC data…

• New physics shows up at the LHC ⇒ CLIC will
– Complete the particle spectra, with a very high reachp p p , y g
– Measure accurately parameters of the model (LC quality)

• Only a light Higgs at the LHC ⇒ CLIC will 
– Measure its properties very accurately, like ILC and more..
– Extend the LHC direct search reach for non-colored particles
– Extend the indirect search reach to a scale of 500 (1000?) 

TeV via precision measurements
N si s f h si s Hi s t th LHC CLIC ill• No signs of new physics or a Higgs at the LHC ⇒ CLIC will
– Study WW scattering in the 1-2 TeV range in detail
– Extend the LHC direct search reach for non colored particles– Extend the LHC direct search reach for non-colored particles
– Extend the indirect search reach to a scale of 500 (1000?) 

TeV via precision measurements
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Q: what about using CLIC technology for a 
500-1000 GeV collider
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Time Structure of the Beams

100 Hz
CLICL

1 train = 
154 bunches154 bunches
0.67 nsec apart
~ 20 cm

Sub-TeV colliders
Warm technologyWarm technology   

⇒ 120 Hz   1 train = 192 bunches   1.4 nsec apart
Cold technology     gy

⇒ 5 Hz  1 train = 2820 bunches   336 ns apart
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Experimenting at CLIC similar to the NLC



NLC/TESLA comparison: Summary

From K. Desch# of BX US/optimized US/optimized EU/optimized

Benchmark: mass determination of 120 GeV Higgs in HZ→bbqq

at LCWS04
(Paris)

for <10BX for>=10BX for 1BX
0 71 74 68
1 74 78

TESLA 77 79 75
4 79 82 78
5 79 82 2-5 ns track/calorimeter

10 91 82
20 92 81 92
64 110

time stamping needed, 
possible in principle
with TPC and Si (SiW)

At NLC, a bunch tagging of few ns is needed to become comparable to the

64 110 with TPC and Si (SiW)

, gg g p
TESLA situation. R&D on detector timing is vital for warm technology 

-and for CLIC-
But a similar precision can be reached
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But a similar precision can be reached



Conclusions

• Experimental conditions at CLIC are more challenging than e.g at LEP, 
or even a TeV class collider.
Ph i t di f th CLIC t h i l d d th ff t f th• Physics studies for the CLIC report have included the effects of the 
detector, and backgrounds such as e+e- pairs and γγ events. The muon 
background is only partially studied. We do not expect significant 
changes with the new parameters but can check a few channels

• Benchmark studies show that CLIC will allow for precision 
measurements in the TeV range ( theory )measurements in the TeV range (…theory…).

• Detector R&D will be needed (tracking with good time stamping, better 
calorimetry, forward detectors for lumi, etc.).                                     
A d t il d l t t d i f th t i t t iA detailed, more complete, study is  one of the most important issues 
to address for a continuing CLIC physics study group.                                     
Timing requirements are similar as for “warm techn.” LC detector

• Synergy on R&D with other projects!
• Physics group (D. Schlatter, ADR, John Ellis) activity low right now. 

Expect some revival after parameters stabelize (but LHC )
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Expect some revival after parameters stabelize (but LHC…)



Backup
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Summary

LHC (or Tevatron) will show 
where Nature takes us

CLIC Accelerator R&D will
continue till at least 2007
Good progress being made
by the CLIC acceleratorby the CLIC accelerator
group

Physics study results will bePhysics study results will be
available in a CERN yellow 
report by  the end of the year

e+e- physics back at CERN around/
before 2020 or CLIC part of 

f ili h (U ?)
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an e+e- facility somewhere (US?)



Examples of New High-Scale Physics
M =900 GeVMH=900 GeV

New Z’ resonance

Heavy Higgs

Extra Dimensions

Supersymmetric particles:
# of  higgses, sleptons

i k
√s=5

gauginos, squarks 
detected for benchmark 
scenarios 
(hep ph/0306219)

√s=3

(hep-ph/0306219)

CLIC physics study:
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CLIC physics study:
CERN Yellow Report, hep-ph/0412251



Example of Low-Scale Physics: e+e- →HHνν

Precision on triple-Higgs
coupling for lightcoupling for light
Higgs masses: 
• mH = 120 GeV
• mH = 140 GeV
• mH = 180 GeV
• mH = 240 GeV• mH  240 GeV

3 TeV

Can improve by factor 1 7 if both
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Can improve by factor 1.7 if both
beams are polarized

Also: measurements of rare Higgs decays



Rare Higgs Decays: H→μμ

Not easy to access at a 500 GeV collider
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gHμμ


