Report from the 1st meeting of CLIC ACE

Markus Huening, Alban Mosnier, Vladimir Shiltsev and Tor Raubenheimer

Charge and Outline

A short version of the charge:

- Comment on parameters
- Key issues to be addressed
- Program to address issues
- Adequacy of resources

Outline of report:

- Parameters
- Scope of CLIC study
- Key issues: structures, PETS, other
- CTF3 and other experiments
- Resources and CDR

Review Schedule (1)

Wednesday 20 June 2007 08:00 Executive Session (30') 08:30 General Introduction: Parameters, Key Issues, Programme and Resources 09:30 Structure Issues, R&D and Limitations 10:50 Structure Optimisation (30') 11:35 Structure Tests: Results and Programme 14:00 Overall Complex and Parameters including Injectors, Damping Ring and BDS 15:00 Drive Beam Complex and Power Generation including CLIC Module 16:20 Cost Model including Civil Engineering and Conventional Facilities 17:05 Executive Session 19:00 Dinner

Review Schedule (2)

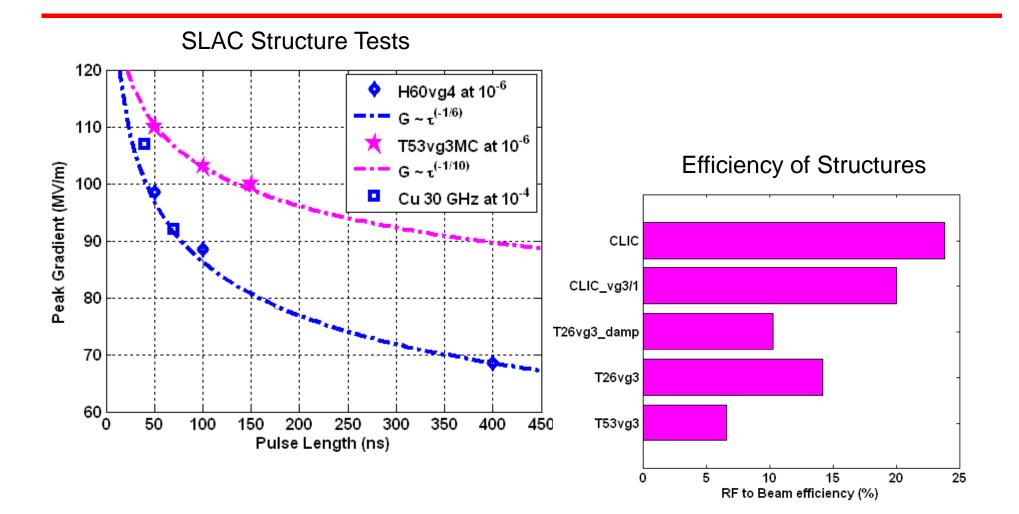
Thursday 21 June 2007
08:00 Executive Session
08:30 CTF3 Programme, Status and Collaborations including Commissioning and Operation
09:30 Lessons Learned (Past, Present and Future) in CTF3
10:50 Beam Dynamics (Main and Drive Beams) including Alignment and Stabilisation Issues, Luminosity and Background
11:50 Visit of CTF3
14:00 Review of CLIC Challenges and Key Issues
15:20 Review of (addressed and non-addressed) key Issues including Future Activities, Technical Programme in Preparation of Conceptual Design Report
16:20 Detector and Physics Issues (30)
17:05 Executive Session (1h45')

CLIC Parameters

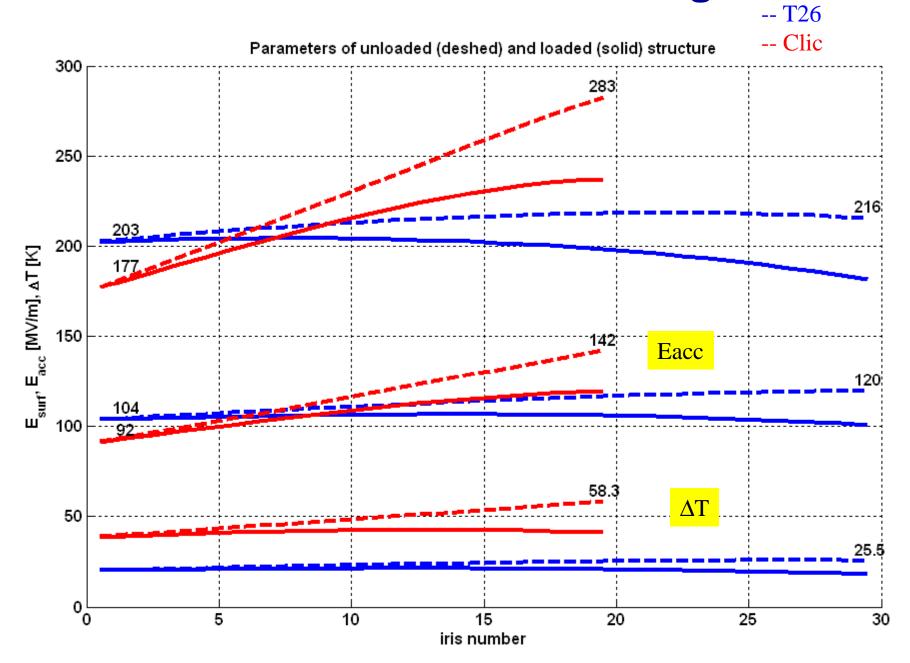
- Reduction in gradient and rf frequency look very desirable
 - Detailed cost model developed to guide parameter choices
 - Do not understand all details of optimization but 'feels' right
 - Curves flat need to rely on engineering and experience
 - Need another iteration on structure optimization
- Two main concerns
 - Parameterization is based on 'P/C' scaling
 - Uncomfortable with 300 ns pulse length at 100 MV/m
 - Not clear that scaling is valid over full range of interest
 - Emittance parameters are pushed very hard
- Suggestions:
 - Additional experiments to benchmark the 'P/C' scaling
 - Develop staged approach starting with more established ε's
 CLIC ACE June 22, 2007 Page 5 Tor Raubenheimer

CLIC Study Scope

- Focus on elements that are unique to CLIC concept
 - High gradient \rightarrow 100 MV/m is **4 times** ILC geographic gradient
 - Two-Beam-Accelerator \rightarrow allows high efficiency with short rf pulses
 - \rightarrow Scales to high energy in cost effective manner
- CTF3 demonstration addresses major technical issues
 - Power generation, PETS, and accelerator structures
- Adopt established parameters in areas where demonstration is less CLIC-specific or more difficult
 - Develop a staged approach to 3 TeV
 - Start from KEK ATF-like emittances and NLC/JLC tolerances
- Further develop the cost model
 - Use ILC estimates wherever possible and limit unique aspects


CLIC Gradient

- Strongly support reduction to 100 MV/m loaded
 - SLAC T53 and H75 results are supportive although proposed gradient is still ~20% more than has been demonstrated
 - Concern that 300 ns pulse length is too long at 100 MV/m
- Need to demonstrate gradient performance quickly
 - Concern that mixing structure fabrication, damping, and gradient issues can make results hard to interpret
 - Suggest rapid demonstration of gradient
 - Test 'pieces' of CLIC structure to verify 'P/C' scaling maybe do this instead of building the T26 structure at SLAC
- Take full advantage of existing facilities
 - Working with SLAC & KEK very good Fermilab also ??
 - Use all available sources of power and fabrication
 - Stand-alone 12 GHz facility is very important


CLIC ACE June 22, 2007

Page 7

CLIC Gradient Issues

Gradient – Structure Design

Other Structure Issues

- Heavily damped structure seems most promising
 - Permits close bunch spacing
 - Might consider 'tuning' wakefield with a/ λ to further reduce wake at 2nd bunch
 - Develop tests (separate from gradient program) to understand choices
 - Loads, geometry, error sensitivity, etc
 - What about HOM diagnostics structure alignment?
- Concept of quadrant structure seems very promising
 - Develop tolerance specifications
 - Work with CERN engineering to understand fabrication
 - Separate from gradient program
- Careful of cost model

Provides guidance but engineering and common sense important

CLIC ACE June 22, 2007

Page 10

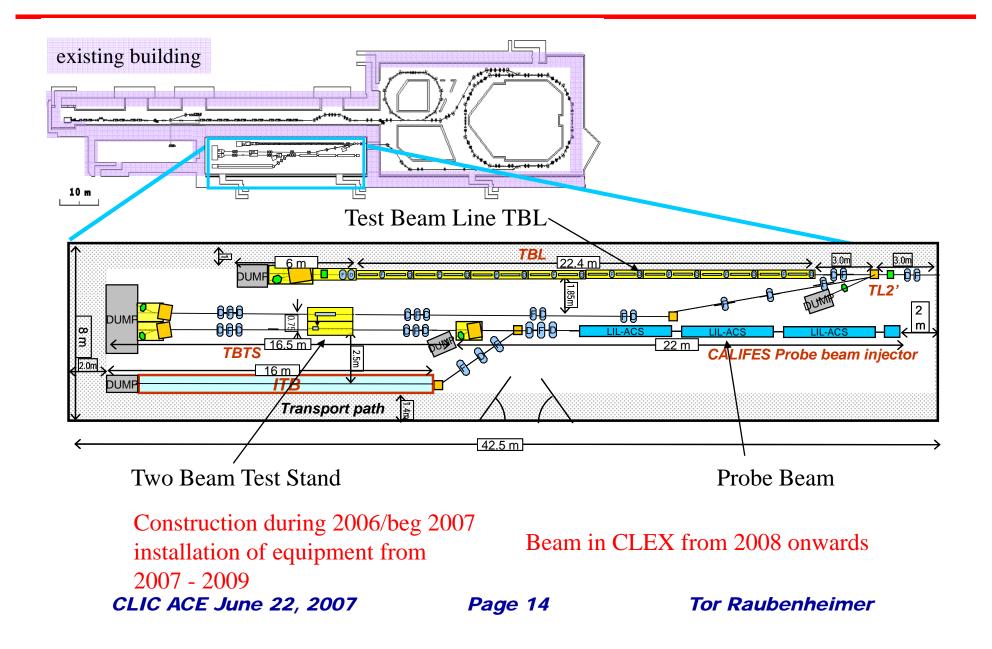
CLIC Structure Development

- Structure program is a major effort that is critical to the CLIC concept
 - Would like to see detailed structure development program
 - Need detailed fabrication and testing schedule with milestones and decision points
 - Focus on most promising path 3 separate issues:
 - » understand gradient and scaling
 - » understand impact of damping on gradient
 - » engineer cost effective structure
 - Structure R&D program has been very effective but need to evolve towards 'project' mode
 - Need strong management model and additional support

Power Extract Transfer Structure (PETS)

- PETS is as critical as the accelerator structure
 - Power and fields matched to P/C scaling but different regime
 - Relatively good experience with past PETS
 - Need experience with present concept for PETS
 - Probe limits of PETS to verify margins
 - CTF3 will operate at lower rep rate and short pulse
 - Need to verify lifetime of PETS accelerated testing
 - Demonstration of PETsonov is also important
 - Need operational experience with this as well
- Two-beam Test Area important to study limits
- Would suggest planning to take power from TBL to power structures later timescale but important

 \rightarrow 400 MeV to 800 MeV test accelerator


(Maybe some modules instead of 16 PETS in TBL)

CTF3 – CLIC Test Facility

- CTF3 will demonstrate critical part the CLIC concept
 - Very impressive facility!
 - Will be largest LC test facility constructed
 - Already demonstrated many critical issues
 - Heavily loaded acceleration
 - Delay loop and recombination
 - Commissioning combiner ring
 - Need to ensure this is an operational facility not just a test demonstration
 - Reliable routine operation with stable beams
 - Two significant differences:
 - Average power and pulse length
 - Need to consider how to deal with these
- Clearly need additional support to finish and operate facility

CLIC ACE June 22, 2007 Page 13

CTF3 Layout – from Gunther

Other Critical Tests

- Vibration suppression
 - Important to demonstrate but explore if it is necessary to test as part of CTF3 – perhaps stand-alone test is sufficient
- Instrumentation
 - Take advantage of ATF and ILC programs
 - Demonstration of structure alignment important
- Emittance transport (structure and quadrupole alignment)
 - Explore studies at CTF3 to demonstrate main beam transport and emittance preservation (could this be part of a test linac built using the TBL??)
- Beam phase stabilization
 - Synergy with FEL and ERL programs ??

Resource Issues

- A CLIC CDR by 2010 is a huge undertaking
 - Excellent group but …
- Clearly very limited by resources
 - Proposal for additional 16MCHF and 70 FTEs over 3 years
 - Additional support from collaborations at SLAC, KEK, and ??
 - Still seems insufficient
 - Need more support for CTF3 and structure development
 - Need staff to share responsibility for projects
 - Do not see any engineering effort for CDR and costing
 - Potential resources at CERN that would be extremely useful for CLIC CDR and TDR
- Important to develop resource loaded schedule
 - Evolution from R&D group to more project orientated

CLIC Conceptual Design Report

- Development of a full CDR will be a large undertaking
 - Resources may be better directed towards demonstrations
 - CTF3 demonstration addresses major technical issues
- Focus on elements that are unique to CLIC concept
 - Two-Beam-Accelerator concept
 - High gradient accelerator
 - Adopt more established parameters in other areas with a staged approach to 3 TeV
- Develop international cost model Important for acceptance of CLIC concept
 - Need to show cost scaling with energy
 - Use ILC estimates wherever possible
 - Participate in ILC engineering where common (civil, rf power, magnets, ...)

 CLIC ACE June 22, 2007
 Page 17
 1

Final Comments

- Very impressed with CLIC effort
 - Large amount of progress over the last decade
 - Has the potential to offer a real path to multi-TeV e+/e- LC
- CTF3 will demonstrate most of the critical issues
 - Potential to create an 800 MeV test linac using CTF3 TBL
 - Clearly needed for TDR but likely possible well before
- Like to have the next meeting focused on the structure and PETS development program
 - Dates TBD but probably January
- Excellent presentations
 - Thanks to all participants (extra thanks to Sonia!)