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® L1 tracking trigger concept
® Long barrel geometry

® Definition of L1 primitives
® Hit rates

® Track reconstruction at L1



Triggering at LHC phase 2

® Tracker input to L1 trigger is necessary

¢ combined mu, e and jet triggers would exceed 100kHz at high luminosity and pile-up
¢ increasing thresholds would affect physics performance

¢ including tracks pT measurement from the tracker reduces significantly the rates
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Triggering at LHC phase 2
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T L tri " ~95% of tracks have
raCKk trigger Concep 0T<2.5 GeV/c

Fraction of Tracks "below" transverse momentum

® Objectives if

@ Reconstruct tracks with pt > [2 - 2.5] GeV/c i
0.8f-
¢ Identify the origin along the beam axis with ~1mm precision [

0.6

® Silicon modules to provide both Level-1 data (40MHz) and read-oui |

data (~1 OOKHZ) 0.4:

® Require local rejection of low pr tracks for L1 data 0.2:
¢ very large data reduction ? .

. . . . 6 Track gT(GeV/c1)0
® Very fine z resolution due to pixels allows to remove large fraction

of combinatorics background

® “pr modules” for pr discrimination

¢ hit correlation in two sensors very closely spaced apart ‘“‘stub’”’ Pass fail
¢ exploit large CMS magnetic field ~

@ ~100pm resolution on lateral displacement is needed

: VAN
® Define L1 stubs YTZ, -/ fuummu

@ minimum pr-threshold for accept-reject stub

@ used as basic components of L1 track



Long barrel geometry

Current configuration
® 6 long barrels (= 3 Super Layers)

r (mm)
1200
1000

800
600
400

200

no1 02 03 04 05 06 07 08 09 1.0

NN ////////

Stack Members

) / projection of
T _shortharrels
- ——r extends
} Stack - = =" n-coverage
e Pl -===" .. of outer barrel
o % ==

— oublé’S’tack

7——J Phase 1 Pixel Detector

Phase 2 Long-Barrel
"All-Trigger" Silicon Tracker

——=—

——
s

0 ¢ BPx FPIX

® Stack composed of two pixel layers ~1mm apart

® Double stack composed of two stacks ~4cm apart

® Pixel size: ~100pm X ~1mm (¢ X 2)

® Very challenging design

¢ large number of pixels, high power consumption...

® Hermetic azimuthal coverage to keep data
flow local within a ladder
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Outer tracker completely
rebuilt with pt modules

2800 z(mm)

Self-contained ¢ sectors.
Each sector needs to be combined with

the two neighbouring sectors (left and
right) to “contain” ~2.5 GeV tracks.

\
15 degree sector \




Features and limitations of the simulation

® The track trigger code is flexible
¢ Implementation details of each object (i.e. cluster, stub, etc.) invisible to higher level objects
¢ There are already several available algorithms for primitives
¢ Physics: local minimum pr threshold is configurable
¢ Pixel size and stack separation are customizable

¢ In principle it is possible to try different layouts (es. swap SL2 <> SL3)

¢ But track trigger code is still hard wired on the long barrel geometry
¢ Ongoing work to remove the dependency on the particular layout
¢ Only pixel-pixel modules configuration is currently available

¢ ...Full automatization for any possible geometry not really feasible



Tk layout tool to design geometries
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¢ We are working to redesign the long barrel
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¢ It requires the skills of an expert in geometries
CMS  Uparade



Seqguential scheme for pattern

® pt sensor: collect clusters of hits

¢ in the simulation: generate sim hits for a given
number of pile-up events

¢ use pixel digitizer for ~realistic hits

¢ clustering algorithm to remove combinatorics

® pr module: two sensors ~1mm apart (layer)
¢ Pair of clusters to form a stub

¢ pT>2 GeV/c requirement to reduce rate

® Super Layer: two pr modules ~4cm apart

¢ Pair of stubs to form a tracklet

® Current L1-track algorithm: combine one
tracklet with stubs in other layers

¢ L1-track algorithms still under development

recognition

Each blue line is a pr module (pair of sensors)
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Pixel digitizer

/P,

track n

(a) The track segment is split into many parts (about 100) each with charge q;
which is fluctuated according to the G4 dedx fluctuation formula.

(b) Each point charge is drifted to the detector surface under the influence of the B-field.

(2™ order Lorentz force used).
(¢c) The point charge is diffused with a Gaussian smearing.
(d) All charges within a single pixel limit are collected to give the pixel charge Q..

(e) Noise is added. There are two types of noise: detector noise & readout noise.
The 1* one determines which pixel is above threshold and is read out.
The 2™ one determines the noise contributions to the signal at the ADC input.
(f) A threshold is applied and the charge is converted to ADC counts (integer).
(g) Inefficiencies and miss-calibration (ATANH formula) are applied.
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Pixel digitizer
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Cluster and stub formation

® Hits need to be clustered, to
reduce combinatoric bkg (2-3x)

® A few algorithms are available
® Currently using 2D algorithm
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Clusters of hits are input information for
production of track stubs

* LUT’s will depend on final tracker design
* use of global coordinates and

trigonometry to open

p-dependent matching windows

* p-window from p. threshold

* track must point back to luminous
region

Configurable pr threshold in the code ,,



Stubs production efficiency

® Measured on single muon events

® Sharp production threshold for tight
pT requirement in the stub algorithm

¢ but much smoother for the higher

(5 GeV/c) threshold
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Average rate estimates per module

® Each module has area ~100cm?
¢ Rates averaged over phi
® Expressed in MHz/cm?

® Calculated for 200 pile-up events per bunch crossing with 50ns bunch spacing

@ corresponds to expected Phase 2 luminosity ~ 5.5 10%* cm= s

® Obtained with both full and fast simulation of CMS

® Values still subject to change, but the plots give useful information:
¢ plot scale gives an indication of the overall rate
¢ relative values give rate reductions
¢ shapes give indications of which regions of the detector are subject to higher rates

@ understood rate differences between the CMS full and fast simulations

14



Average hit rates per z module 3
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® 16 MHz/cm? corresponds to 0.8 hits
per cm? for 20 MHz bunch crossing
rate

® Scale difference between full and fast
simulations due mostly to delta rays
not included in the fast simulation

® Shape difference at high n values are
due to limitations of the fast simulation

@ Differences between full and fast
simulations significantly reduced with
clusters

® Stub rate significantly reduced in the
high eta region

@ interaction region requirement to form a stub
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L.ocal hit fluctuations

® Not only average rates, but also hit fluctuations - and tails - are important to
design read-out chips

® We study fluctuations in different areas and regions of the detector
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Tracker + ECAL matching: electron example

(study conducted by Laura Fields, former Cornell University post-doc)

® First attempt to match ECAL Level 1 electrons with tracker stubs
® Level 1 electrons are matched to two or more stubs in different tracker layers

® Algorithm to match an electron with a stub:

¢ Ad between a stub and the projected electron trajectory
@ Z-intercept of line between electron and stub on r-z plane

¢ similar algorithm to match stubs on different tracker layers

® Study performed on 200PU with the fast simulation only - so far
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Results from electron study
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® Significant rate reduction by adding stub information
® Highest efficiency configuration: electron + stubs in two of the first three layers

¢ Efficiency reduction at higher eta

¢ due mostly to material effects

¢ usage of fast sim - need to update by using the full CMS simulation

® This study is still preliminary for a quantitative interpretation o



Off-detector processing: tracklets

(Ron Lipton, Marvin Johnson)

® The local design minimizes data transfer and e
Interconnection complexity

® |Input FPGA finds tracklets from stubs within a
rod and finds destination rods in other layers

Find Tracklets

® Stubs are retained in “home” rod for matching Styb —

with incoming tracklets [

o Find Tracks
® Tracklets are routed to destination FPGAs e
where they are combined with other tracklets tracklet/stub
and stubs to form track candidates ROD N

Routing

® Resulting track candidates are sent out and to other
possible redundancy removed s layers
in
® Only tracklets and tracks are formed across Tracklets

rods Stub

Find Tracks
tracklet/tracklet

ROD N+| tracklet/stub

Track
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“Stu b”

Tracklet formation Trakiet” <

-

® Our tracklet formation algorithm is similar to the algorithm for stub
® Tracklet direction fully constrained if using vertex information

® Tracklet pt obtained by a fit (two stubs + beamspot)

® Tracklet production efficiency in the first and last Super Layers
¢ single muon events

® Reminder: stub production threshold set to 2 GeV/c

¢ sharp tracklet production efficiency
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Corrections to tracklet algorithm

@ Initial attempt:

¢ vertex in (0,0)

¢ back-propagation to vertex with

a straight-line

® Straight-line fit significantly
biassed in the first layers
¢ replaced by full helix fit
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Corrections not really feasible in hardware
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Bulld L1 tracks from tracklets

POSITIVE TRACK

® Goal to minimize the track search region

¢ to reduce number of equations for hardware implementation

® L1 tracks built by propagating tracklets to other
two Super Layers

¢ Reduce inefficiencies by matching a tracklet even to single
stubs instead of tracklets on the other Super Layers

@ find best possible track in case some sensors are missing
¢ drawback: could find the same track three times

® define A¢ and Az tables for tracklet-stubs matching for different pr

® pbeamspot correction is also needed

® Apply L1 track fit to obtain track pr (still preliminary)
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L1 tracks

® L1 track production efficiency from the first Super Layer (R=32-36 cm)

® We notice some effects due to pixel granularity and trajectory approximation

¢ requires further development

w

@ L1 track algorithm is still preliminary and not very realistic

¢ But L1 track objects are already available for studies to match tracking trigger object
to the muon and calorimeter triggers!!
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Conclusions

® Adding tracker information at Level 1 triggering is very important for rate
reductions

¢ A new tracker is required

¢ We are studying possible new tracker geometries

® Add momentum information to Level 1 by using pT modules

¢ Studying different topologies, sensors, chips...

® We are testing and comparing several ideas for building Level 1 tracks

¢ only sequential scheme presented here (several algorithms available)

¢ all of them show promising significant rate reductions
® Algorithms for basic primitives quite well tested and established

® Currently work in progress

¢ add flexibility to the simulation code (e.g. allow different geometries, topologies)

¢ studying how to improve algorithms for design of Level 1 tracks
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