

Instrumentation of the Upgraded ATLAS Tracker with a Double Buffer Front-End Architecture for Track Triggering

David Wardrope, on behalf of the ATLAS Collaboration

3rd May 2012 Workshop on Intelligent Trackers, Pisa

The Experimental Challenge

- LHC upgrades foreseen for 2022 will increase the instantaneous luminosity to $\sim 5 \times 10^{34}$ cm⁻²s⁻¹
- Enables searches for extremely rare processes and high precision studies
- e.g. $H \rightarrow \mu \mu$, WW scattering, Higgs couplings, SUSY Potential physics programme requires that ATLAS can trigger efficiently on single leptons with $p_T \sim 25$ GeV
- Challenging, since higher luminosity means
 - Higher rates
 - More difficult environment ~150 collisions per bunch crossing!

2012 collision $Z/\gamma^* \rightarrow \mu \mu$ candidate event

25 interaction vertices reconstructed

>6× more expected after upgrade

Can trigger rates be controlled in such an environment?

Current ATLAS Trigger System

3 level system

Hardware-based Level 1 (L1) Software-based Level 2 and Event Filter

Level-1 identifies objects passing programmable p_T thresholds

EM clusters, muons, taus etc.

Decision to accept event based on multiplicity of these objects

Latency < 2.5μ s

Limit imposed by on-detector pipeline memories

Tracking information cannot be used at Level-1

L1 Accept (L1A) rate $\lesssim 75~kHz$

Current ATLAS L1 Trigger at High Luminosity

L1 trigger is operating well during current data-taking but cannot meet challenge posed by HL-LHC

e.g. single electron trigger rate with $E_T > 18 \text{ GeV}$

At $\sqrt{s} = 7$ TeV and L = 1×10³⁴ cm⁻²s⁻¹, Rate = 20 kHz

At $\sqrt{s} = 14$ TeV and L = 7×10³⁴ cm⁻²s⁻¹, Rate = 380 kHz

Proposed ATLAS Upgrades

2018 – Phase I upgrades

New Muon Spectrometer small wheels (Endcaps) Improved trigger p_T resolution and reduced fake rate Higher granularity Level-1 calorimetry Level-1 Topological Trigger processing Selections based on topological variables, resolve object overlaps

2022 – Phase II upgrades

Inner detector replacement

TDAQ system upgrade

Upgrade of most FE electronics

Some muon spectrometer Monitored Drift Tube chambers are inaccessible Use of full calorimeter granularity and resolution at Level-1 Use of muon precision tracking chambers at Level-1 Level-1 track trigger

Inaccessible muon FE electronics limits L1 latency \lesssim 20 μ s and L1A rate \lesssim 200 kHz

Incorporation of Tracking Information

Tracking information can greatly reduce trigger rates by Rejecting fakes

Improving p_T resolution

Ensuring objects come from common vertex

Single electron rates could be reduced by factor 10

3rd May 2012

David Wardrope

Incorporation of Tracking Information

Tracking information can greatly reduce trigger rates by Rejecting fakes

Improving p_T resolution

Ensuring objects come from common vertex

Single muon rates could be reduced by factor 3-10

3rd May 2012

David Wardrope

- The "LO+L1" scheme Level-0:
 - Coarse calo and muon data
 - Rate 40 MHz \rightarrow 500 kHz
 - Latency < 6.4 μ s
 - Defines Regions of Interest (Rols) for L1
- Level-1:
 - Tracker data only from Rols Refined information from calorimeters and muons Rate 500 kHz \rightarrow 200 kHz Latency < 20 μ s

Possible Implementation of Two Buffer Scheme

Front-End – Latencies and Bandwidths

Bandwidth = (L1A rate + Rol data fraction×L0A rate) × event size e.g. L1A = 100 kHz, L0A = 500 kHz, 10% Rol frac. ⇒ 150 kHz × ev. size Bandwidth requirement is not great

L0 Buffer Length = 6.4μ s × 40 MHz = 256events long L1 Buffer Length = 20μ s × 500 kHz = 10 events long Two buffer scheme greatly reduces buffer length needed

Proposed ATLAS Strip Tracker Architecture

Front End ASIC Readout Architecture

Front End ASIC Readout Architecture

Data Flow

Each hybrid is connected to a ROD on a (virtual) private link Bandwidth allocated per link

Bandwidth is the same along the whole chain

Each FE-ASIC generates packets and passes them to its neighbour, in 2 groups of 5

FE-ASICS decide to pass their own packet or their neighbour's based on priority level set by their position in the chain R3 packets must wait for earlier packets to clear

Is it possible to read out the regions within 6 μ s?

Results from Discrete Event Simulation

Parameters

LHC bunch pattern (long/short gaps) 200 overlaid PU events LO rate = 300 kHz, L1 rate = 75 kHZ, R3 rate = 3 kHz Data packet size = 60 bits Examine various configurations 80 Mb/s links, 160 Mb/s links 160 Mb/s is consistent with tracker baseline design Separate links (real or virtual) for R3 and L1 data Allows R3-optimised data packet (33% smaller) Separate R3 and L1 buffers on HCC R3 data can queue-jump L1-data

Dedicated vs Shared Links

R3 data ABC to stave xfer Entries shared 80Mb/s link 7490 5713.035 shared 160Mb/s link Mean 10³ RMS 2129.182 dedicated 80Mb/s link 7535 Entries 3733.763 Mean RMS 602.361 10² Entries 7464 4525.867 Mean RMS 348.919 10 1 10000 20000 30000 time ns

On average, 160Mb/s common R3-L1 link is faster than dedicated 80 + 80 Mb/s links 98.5% of R3 data is received in < 5.5 μ s

Optimal Configuration

2 ×160 Mb/s links feed the HCC With a single 160 Mb/s Stave GBT output link HCC FIFOs fill faster than they drain

Use a dedicated R3 buffer so R3 data can be prioritised

Increased output bandwidth is beneficial, but not necessary:

Bandwidth Mb/s		% of R3 data received in				
Chip	Stave	< 4.0 μ s	< 4.5 μs	< 5.0 µ s	< 5.5 μs	
Shared $160 \times 2 = 320$	Shared 160	71.7	92.7	96.6	98.5	
Shared $160 \times 2 = 320$	Shared 240	94.6	97.4	98.8	99.5	

Optimal Configuration vs Different Rates

Rates (kHz)		% of R3 data received in					
LOA	L1A	R3	< 5.0 µ s	< 5.5 μs	< 6.0 μs	< 6.5 μs	
300	75	3	95.4	97.9	99	99.5	
300	75	15	92.9	96.4	98.2	99.2	
300	75	30	89.6	93.7	96.5	98.1	
500	100	5	93.6	97	98.5	99.2	
500	100	25	88.8	93.3	96.3	97.9	
500	100	50	82.6	88.3	92.8	95.5	

It is possible to get most R3 data out within 6 μ s for a wide range of scenarios

Track Finding

Pattern recognition performed using associative memory

Tests many patterns (e.g. 10⁹) in parallel Extremely fast Used in CDF SVT, ATLAS FTK

Hardware track fitting carried out in roads

Fast linear approx. algorithm gives near ideal precision

In principle, tracks can be found for all momenta Limited by number of patterns stored

3rd May 2012

Plans

Hardware

- ABC130 is being designed in 2012
- Submission of ABC130 and HCC planned for Spring 2013 in an engineering run
- First chips expected in autumn 2013
- 3D AM chip for track pattern recognition in R&D
 - See presentation by Tiehui Ted Liu on Saturday

More generally

- Physics studies will determine requirements on track measurement quality, efficiency and fake rates
- ATLAS Phase II Upgrade Letter of Intent will be submitted to the LHCC in 2013

Conclusions

- Two-Buffer "Level-0 + Level-1" track trigger allows for use of track information at Level-1
 - Reduces data output bandwidth from tracker
 - Less power, less cooling, fewer output links
 - Reduces buffer size needed

Two-buffer scheme does not compromise offline tracker performance

No change of layout, little (if any) extra material Use of track information at Level-1 should enable the ATLAS trigger system to meet the challenges of L = 5×10^{34} cm⁻²s⁻¹

ADDITIONAL SLIDES

Impact of Raising Thresholds on Physics

hep-ph/0204087: "Physics potential and experimental challenges of the LHC luminosity upgrade" Most channels include single lepton, $p_T > 20$ GeV

Inaccessible Muon Chambers

Changing FE electronics in region shown extremely difficult Requires dismantling MDT chambers

David Wardrope

Data Transfers

Associative Memory

